首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax‐like protein (ATX), Su (var)3‐9 h omologs protein (SUVH), Su(var)3‐9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S‐adenosylmethionine (SAM) binding pocket and a post‐SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein‐protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre‐SET and post‐SET domains in HKMTs of the aforementioned plant species lead to variations in class‐specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.  相似文献   

2.
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.  相似文献   

3.
4.
5.
6.
7.
8.
Su(var)3-9 is a dominant modifier of heterochromatin-induced gene silencing. Like its mammalian and Schizosaccharomyces pombe homologues, Su(var) 3-9 encodes a histone methyltransferase (HMTase), which selectively methylates histone H3 at lysine 9 (H3-K9). In Su(var)3-9 null mutants, H3-K9 methylation at chromocentre heterochromatin is strongly reduced, indicating that SU(VAR)3-9 is the major heterochromatin-specific HMTase in Drosophila. SU (VAR)3-9 interacts with the heterochromatin-associated HP1 protein and with another silencing factor, SU(VAR)3-7. Notably, SU(VAR)3-9-HP1 interaction is interdependent and governs distinct localization patterns of both proteins. In Su(var)3-9 null mutants, concentration of HP1 at the chromocentre is nearly lost without affecting HP1 accumulation at the fourth chromosome. By contrast, in HP1 null mutants SU(VAR)3-9 is no longer restricted at heterochromatin but broadly dispersed across the chromosomes. Despite this interdependence, Su(var)3-9 dominates the PEV modifier effects of HP1 and Su(var)3-7 and is also epistatic to the Y chromosome effect on PEV. Finally, the human SUV39H1 gene is able to partially rescue Su(var)3-9 silencing defects. Together, these data indicate a central role for the SU(VAR)3-9 HMTase in heterochromatin-induced gene silencing in Drosophila.  相似文献   

9.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

10.
11.
Seeger K  Lein S  Reuter G  Berger S 《Biochemistry》2005,44(16):6208-6213
Saturation transfer difference NMR measurements were performed to investigate the interaction of S-adenosyl-l-methionine (AdoMet) with SU(VAR)3-9 from Drosophila melanogaster. SU(VAR)3-9 has a SET domain and plays an important role in methylation of lysine-9 of histone H3 which results in gene silencing. We determined the binding epitope of AdoMet and compared it with a crystal structure of another SET protein.  相似文献   

12.
13.
Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.  相似文献   

14.
The ESC-E(Z) complex of Drosophila melanogaster Polycomb group (PcG) repressors is a histone H3 methyltransferase (HMTase). This complex silences fly Hox genes, and related HMTases control germ line development in worms, flowering in plants, and X inactivation in mammals. The fly complex contains a catalytic SET domain subunit, E(Z), plus three noncatalytic subunits, SU(Z)12, ESC, and NURF-55. The four-subunit complex is >1,000-fold more active than E(Z) alone. Here we show that ESC and SU(Z)12 play key roles in potentiating E(Z) HMTase activity. We also show that loss of ESC disrupts global methylation of histone H3-lysine 27 in fly embryos. Subunit mutations identify domains required for catalytic activity and/or binding to specific partners. We describe missense mutations in surface loops of ESC, in the CXC domain of E(Z), and in the conserved VEFS domain of SU(Z)12, which each disrupt HMTase activity but preserve complex assembly. Thus, the E(Z) SET domain requires multiple partner inputs to produce active HMTase. We also find that a recombinant worm complex containing the E(Z) homolog, MES-2, has robust HMTase activity, which depends upon both MES-6, an ESC homolog, and MES-3, a pioneer protein. Thus, although the fly and mammalian PcG complexes absolutely require SU(Z)12, the worm complex generates HMTase activity from a distinct partner set.  相似文献   

15.
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.  相似文献   

16.
17.
The chromo and SET domains are conserved sequence motifs present in chromosomal proteins that function in epigenetic control of gene expression, presumably by modulating higher order chromatin. Based on sequence information from the SET domain, we have isolated human (SUV39H1) and mouse (Suv39h1) homologues of the dominant Drosophila modifier of position-effect-variegation (PEV) Su(var)3-9. Mammalian homologues contain, in addition to the SET domain, the characteristic chromo domain, a combination that is also preserved in the Schizosaccharyomyces pombe silencing factor clr4. Chromatin-dependent gene regulation is demonstrated by the potential of human SUV39H1 to increase repression of the pericentromeric white marker gene in transgenic flies. Immunodetection of endogenous Suv39h1/SUV39H1 proteins in a variety of mammalian cell lines reveals enriched distribution at heterochromatic foci during interphase and centromere-specific localization during metaphase. In addition, Suv39h1/SUV39H1 proteins associate with M31, currently the only other characterized mammalian SU(VAR) homologue. These data indicate the existence of a mammalian SU(VAR) complex and define Suv39h1/SUV39H1 as novel components of mammalian higher order chromatin.  相似文献   

18.
SET domain-containing proteins of the SU(VAR)3-9 class are major regulators of heterochromatin in several eukaryotes, including mammals, insects, plants and fungi. The function of these polypeptides is mediated, at least in part, by their ability to methylate histone H3 on lysine 9 (H3K9). Indeed, mutants defective in SU(VAR)3-9 proteins have implicated di- and/or trimethyl H3K9 in the formation and/or maintenance of heterochromatin across the eukaryotic spectrum. Yet, the biological significance of monomethyl H3K9 has remained unclear because of the lack of mutants exclusively defective in this modification. Interestingly, a SU(VAR)3-9 homolog in the unicellular green alga Chlamydomonas reinhardtii, SET3p, functions in vitro as a specific H3K9 monomethyltransferase. RNAi-mediated suppression of SET3 reactivated the expression of repetitive transgenic arrays and reduced global monomethyl H3K9 levels. Moreover, chromatin immunoprecipitation (ChIP) assays demonstrated that transgene reactivation correlated with the partial loss of monomethyl H3K9 from their chromatin. In contrast, the levels of trimethyl H3K9 or the repression of euchromatic sequences were not affected by SET3 downregulation; whereas dimethyl H3K9 was undetectable in Chlamydomonas. Thus, our observations are consistent with a role for monomethyl H3K9 as an epigenetic mark of repressed chromatin and raise questions as to the functional distinctiveness of different H3K9 methylation states.  相似文献   

19.
20.
The histone methyltransferase SU(VAR)3–9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3–9''s activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3–9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3–9 N-terminus. Among several other proteins known to bind Su(VAR)3–9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3–9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3–9 and JIL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号