首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Structure of the rapeseed 1.7 S storage protein, napin, and its precursor   总被引:14,自引:0,他引:14  
Napin (1.7 S protein) is a basic, low molecular weight storage protein synthesized in rapeseed (Brassica napus) embryos during seed development. Napin is composed of two polypeptide chains with molecular weights of 9000 and 4000 that are held together by disulfide bonds. Comparison of the deduced amino acid sequence of a napin cDNA clone with that of napin peptide fragments established that napin is initially synthesized as a precursor of 178 residues. This polypeptide is subsequently processed through several proteolytic events, which ultimately generate the two mature napin chains, of 86 and 29 residues, respectively. Protein biosynthesis in vitro showed that the initial translation product (Mr 20,000) contains a signal sequence which is removed during transfer of the protein into the endoplasmic reticulum. Two additional peptides, of 22 and 19 residues, as well as the COOH-terminal residue, are also removed during maturation of napin, as deduced from the sequence comparison. Comparisons of the napin sequence with other known protein sequences established that there is a significant homology between napin and two other small seed proteins, the castor bean storage protein and a trypsin inhibitor from barley.  相似文献   

2.
3.
Probes derived from cDNA clones of napin and cruciferin, the major storage proteins of Brassica napus, and in situ hybridization techniques were used to examine changes in the spatial and temporal distribution of storage protein messages during the course of embryogeny, with a special emphasis on the developing apical meristems. Napin mRNAs begin to accumulate in the cortex of the axis during late heart stage, in the outer faces of the cotyledons during torpedo stage and in the inner faces of the cotyledons during cotyledon stage. Cruciferin mRNAs accumulate in a similar pattern but approximately 5 days later. Cells in the apical regions where root and shoot meristems develop do not accumulate storage protein messages during early stages of embryogeny. In the upper axis, the boundary between these apical cells and immediately adjacent cells that accumulate napin and cruciferin mRNAs is particularly distinct. Our analysis indicates that this boundary is not related to differences in tissue or cell type, but appears instead to be coincident with the site of a particular set of early cell divisions. A major change in the mRNA accumulation patterns occurs halfway through embryogeny, as the embryos enter maturation stage and start drying down. Final maturation of the shoot apical meristem is associated with the development of leaf primordia and the accumulation of napin mRNAs in the meristem, associated leaf primordia and vascular tissue. Cruciferin mRNAs accumulate only in certain zones of the shoot apical meristem and on the flanks of leaf primordia. Neither type of mRNA accumulates in the root apical meristem at any stage.  相似文献   

4.
S1 nuclease analysis and sub-family-specific oligonucleotide probes were used to characterize the expression during embryogenesis of the napin storage protein gene family ofBrassica napus (oilseed rape). The expression of one sub-class represented by the napin gene gNa peaks and declines earlier than the other members of the family. This sub-class was highly expressed representing ca. 20% of napin mRNA at 26 days after anthesis.  相似文献   

5.
napin是一个重要的种子贮藏蛋白,它以组织特异性方式表达形成。以甘蓝型油菜为材料,克隆了napin基因启动子,测序结果表明,该启动子全长1 135bp,含有启动子特有的TATA-box等调控元件。系统进化分析显示,拟南芥、萝卜、白菜型油菜和甘蓝型油菜napin基因启动子之间既具有较高的同源性,又存在一定的差别。通过进化分析,指导我们在油菜脂肪酸改良过程中,采用不同的启动子在脂肪酸改良方面可能起到不同的效果。  相似文献   

6.
2S albumin storage proteins from rapeseed (Brassica napus), called napins, consist of two different polypeptide chains linked by disulphide bridges, which are derived by proteolytic cleavage from a single precursor. The precursor form of the napin BnIb (proBnIb) has been cloned using a PCR strategy and sequenced. The amino-acid sequence deduced from the clone includes 31 residues of the small chain and 75 of the large chain, which are connected by the peptide Ser-Glu-Asn. Expression of the cDNA encoding proBnIb has been carried out in the methylotrophic yeast Pichia pastoris. The induced protein was secreted to the extracellular medium at a yield of 80 mg.L(-1) of culture and was purified by means of size-exclusion chromatography and reverse phase-HPLC. Recombinant proBnIb appeared properly folded as its molecular and spectroscopic properties were equivalent to those of the mature heterodimeric protein. As 2S albumin storage proteins from Brassicaceae have been shown to be type I allergy inducers, the immunological activity of the recombinant proBnIb was analysed as a measure of its structural integrity. The immunological properties of the recombinant precursor and the natural napin were indistinguishable by immunoblotting and ELISA inhibition using polyclonal antisera and sera of patients allergic to mustard and rapeseed. In conclusion, the recombinant expression of napin precursors in P. pastoris has been shown to be a successful method for high yield production of homogeneous and properly folded proteins whose polymorphism and complex maturation process limited hitherto their availability.  相似文献   

7.
The synthesis of the major protein and lipid storage reserves during embryogenesis in oilseed rape (Brassica napus L., cv. Mikado) has been examined by biochemical, immunological and immunocytochemical techniques. The mature seeds contained about 45% (w/w) storage oil and 25% (w/w) protein. There were three major seed protein components, i.e. about 40-50% total protein was cruciferin, 20% was napin and 20% was a 18 kDa hydrophobic polypeptide associated with the proteinaceous membrane surrounding the storage oil bodies. Embryogenesis was divided into four overlapping stages with regard to the synthesis of these storage components: (1) for the first 3 weeks after flowering, little, if any, synthesis of storage components was observed; (2) storage-oil synthesis began at about week 3, and maximal rates were from weeks 4 to 7; (3) synthesis of the soluble storage proteins cruciferin and napin started at week 6 and rates were maximal between weeks 8 and 11; (4) the final stage was the synthesis of the 19 kDa oil-body polypeptide, which started at weeks 8-10 and was at a maximal rate between weeks 10 and 12. The synthesis of the 19 kDa oil-body protein therefore occurred independently of the synthesis of the soluble seed storage proteins. This former synthesis did not occur until shortly before the insertion of the 19 kDa polypeptide into the oil-body membrane. No evidence was found, either from sucrose-density-gradient-centrifugation experiments or from immunogold-labelling studies, for its prior accumulation in the endoplasmic reticulum. Conventional and immunogold-electron-microscopic studies showed that oil bodies were synthesized in the early to middle stages of seed development without a strongly electron-dense membrane. Such a membrane was only found at later stages of seed development, concomitantly with the synthesis of the 19 kDa protein. It is proposed that, in rapeseed embryos, oil bodies are initially formed with no proteinaceous membrane. Such a membrane is formed later in development after insertion by ribosomes of the hydrophobic 19 kDa polypeptide directly into the oil bodies.  相似文献   

8.
9.
Large scale purification of rapeseed proteins (Brassica napus L.)   总被引:6,自引:0,他引:6  
Rapeseed (Brassica napus L.) cruciferin (12S globulin), napin (2S albumin) and lipid transfer proteins (LTP) were purified at a multi-g scale. The procedure developed was simple, rather fast and resolutive; it permitted the recovery of these proteins with a good yield, such as 40% for cruciferin and 18% for napin. Nanofiltration eliminated the major phenolic compounds. The remaining protein fraction was fractionated by cation exchange chromatography (CEC) on a streamline SP-XL column in alkaline conditions. The unbound neutral cruciferin was polished by size exclusion chromatography. The alkaline napin isoforms and LTP, adsorbed on the beads, were eluted as a whole fraction and further separated by an other CEC step at acidic pH. Napins were polished by hydrophobic interaction chromatography (HIC). The fractions were characterized by reverse phase HPLC, electrophoresis, N-terminal sequencing and mass spectrometry. All the fractions contained less than 5% of impurities.  相似文献   

10.
Napin is a 2S storage protein found in the seeds of oilseed rape (Brassica napus L.) and related species. Using protein structural prediction programs we have identified a region in the napin protein sequence which forms a `hydrophilic loop' composed of amino acid residues located at the protein surface. Targeting this region, we have constructed two napin chimeric genes containing the coding sequence for the peptide hormone leucine-enkephalin as a topological marker. One version has a single enkephalin sequence of 11 amino acids including linkers and the second contains a tandem repeat of this peptide comprising 22 amino acids, inserted into the napin large subunit. The inserted peptide sequences alter the balance of hydrophilic to hydrophobic amino acids and introduce flexibility into this region of the polypeptide chain. The chimeric genes have been expressed in tobacco plants under the control of the seed-specific napA gene promoter. Analyses indicate that the engineered napin proteins are expressed, transported, post-translationally modified and deposited inside the protein bodies of the transgenic seeds demonstrating that the altered napin proteins behave in a similar fashion to the authentic napin protein. Detailed immunolocalisation studies indicate that the insertion of the peptide sequences has a significant effect on the distribution of the napin proteins within the tobacco seed protein bodies.  相似文献   

11.
12.
Mature canoia ( Brassica napus cv. Westar) seeds contain large quantities of the storage proteins cruciferin and napin and storage lipids rich in C18: 1 and C18:2 fatty acids. Both the quantity and quality of these products are altered by freezing during development. Further, the response to freezing changes during seed development. The effects include decreased fatty acid chain elongation, altered fatty acid unsaturation, higher lipid levels and lower protein levels. In addition, seeds in the pivotal moisture range (55%) may be predisposed to precocious germination, which is then inhibited by a lack of adequate seed moisture. The results indicate that freezing imparts its effect in two ways. Initially, there is a freezing (low temperature) component and this is followed by rapid desiccation of the seeds. Although most responses probably result from a combination of the stresses, it appears that inhibition of fatty acid chain elongation is caused by the freezing component and the gradual inhibition of storage protein accumulation is a result of accelerated seed desiccation.  相似文献   

13.
The seeds of pea (Pisum sativum L.) contain several proteins in the albumin solubility fraction that are significant components of total cotyledonary protein (5-10%) and are accumulated in developing seeds concurrently with storage-protein synthesis. One of these proteins, of low Mr and designated 'Psa LA', has been purified, characterized and sequenced. Psa LA has an Mr of 11000 and contains polypeptides of Mr 6000, suggesting that the protein molecules are dimeric. The amino acid sequence contains 54 residues, with a high content (10/54) of asparagine/aspartate. It has no inhibitory action towards trypsin or chymotrypsin, and is distinct from the inhibitors of those enzymes found in pea seeds, nor does it inhibit hog pancreatic alpha-amylase. The protein contains no methionine, but significant amounts of cysteine (four residues per polypeptide), suggesting a possible role as a sulphur storage protein. However, its sequence is not homologous with low-Mr (2S) storage proteins from castor bean (Ricinus communis) or rape (Brassica napus). Psa LA therefore represents a new type of low-Mr seed protein.  相似文献   

14.
The 2.2S spore storage protein (matteuccin) of the ostrich fern, Matteuccia struthiopteris, has been isolated and characterized. It is a small basic protein consisting of two disulfide-linked polypeptides with approximate molecular masses of 3.0 kDa and 8.0 kDa. At least four different isoforms exist where two of the forms differ from the other by having a slightly smaller heavy chain. Amino acid analysis reveals that the 2.2S protein is rich in arginine. Almost complete amino acid sequence information was obtained for the light chain and a partial sequence for the heavy chain. Amino acid sequence comparison reveals that this protein shows a high similarity to seed storage proteins in different angiosperm species in spite of the fact that the common ancestor of ferns and angiosperms lived more than 300 million years ago.  相似文献   

15.
16.
17.
18.
Two globulin storage proteins have been identified in spores of the ostrich fern, Matteuccia struthiopteris (L.) Todaro. The two proteins comprise a significant amount of the total spore protein, are predominantly salt-soluble, and can be extracted by other solvents to a limited extent. The large 11.3 Svedberg unit (S) globulin is composed of five polypeptides with molecular weights of 21,000, 22,000, 24,000, 28,000 and 30,000. Each polypeptide has several isoelectric point (pI) variants between pH 5 and 7. The small 2.2S storage protein has a pI > 10.5 and is composed of at least two major polypeptides of 6,000 and 14,000 Mr. The amino acid composition of both storage proteins reveals that the 11.3S protein is particularly rich in aspartic and glutamic acid, while the 2.2S protein has few acidic amino acids. During imbibition and germination the globulin fraction declines rapidly, with a corresponding degradation of individual polypeptides of each protein. Polyclonal antibodies against each of the two proteins were produced and used for immunolocalization to determine the site of storage protein deposition within the quiescent spore. The proteins were sequestered in protein bodies of 2 to 10 micrometers, that are morphologically similar to those found in the seeds of flowering plants. The results suggest that spore globulins are biochemically similar to seed globulins, especially those found in some cruciferous seeds.  相似文献   

19.
The distribution of napin and cruciferin, the two major storage proteins in rape seed, Brassica napus, has been visualized during seed development by antibody staining of paraffin-embedded and sectioned seeds. The results indicate that the synthesis of both proteins during embryogenesis is strictly regulated with respect to time and tissue. Although the synthesis of napin started a few days earlier than that of cruciferin, both proteins displayed similar patterns in their spatial distributions. They were first detected in the axis, then in the outer cotyledon, and finally in the cells of the inner cotyledon. Both proteins are also present in the endosperm, although in lower amounts. In germinating seeds, napin and cruciferin were rapidly degraded. Within 2 days the amounts had decreased dramatically, and after 4 days hardly any cells contained napin or cruciferin. Biochemical analyses of dissected embryos showed that, for napin as well as for cruciferin, similar levels of polypeptides were found in the axis and cotyledons.  相似文献   

20.
AGL15, a MADS domain protein expressed in developing embryos.   总被引:18,自引:4,他引:14       下载免费PDF全文
To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号