首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R K Dukor  T A Keiderling 《Biopolymers》1991,31(14):1747-1761
The "random coil" conformational problem is examined by comparison of vibrational CD (VCD) spectra of various polypeptide model systems with that of proline oligomers [(Pro)n] and poly(L-proline). VCD, ir and uv CD spectra of blocked L-proline oligopeptides [(Pro)n, n = 2-12] in different solvents are reported and compared to the spectra of poly(L-proline) II, poly(L-glutamic acid), and unblocked proline oligomers. Based on the chain-length dependence of the VCD and electronic CD (ECD) spectra of proline oligomers, it is established that VCD spectra are dominated by short-range interactions. The VCD of random coil model polypeptides is shown to be identical in shape but smaller in magnitude than poly(L-proline) II and of similar magnitude to that of (Pro)n (n = 3, 4). Based on the spectral evidence, it is concluded that the "random coil" conformation has a large fraction of helical regions, conformationally similar to the left-handed, 3(1) polyproline II helix, as was previously suggested by Krimm and co-workers. This conclusion is further supported by studies of effects of salt (CaCl2, LiBr, LiClO4), temperature (5-75 degrees C), and pH on the VCD spectra of L-proline oligomers, poly(L-proline) II, and poly(L-glutamic acid). These show that, after each of these perturbations, a significant local ordering remains in the oligomers and polymers studied, and that charged polypeptides such as poly(L-glutamic acid) are more flexible than are polyproline or even L-proline oligomers.  相似文献   

2.
Native collagen polypeptides exist in a unique triple helical conformation resistant to most proteinases. In this study, the stability of type I collagen triple helix, employing a mixture of trypsin and alpha-chymotrypsin as a proteolytic probe, was examined. The degradation of type I [3H]collagen was monitored as 3H-labeled peptides soluble in trichloroacetic acid (TCA) or by sodium dodecyl sulfate (SDS)-polyacrylamide slab gel electrophoresis. In one set of experiments, collagen substrates were preincubated at various temperatures for up to 8 h, followed by a 15-min proteolytic treatment at the same temperature. At 43 degrees C, most of the collagen was degraded, while the fraction of the substrate degraded at 40, 38, and 35 degrees C was 53, 41 and 19%, respectively. This fraction was independent of the preincubation time which varied from 10 to 480 min. Thus, at any given temperature, a constant fraction of the collagen substrate was susceptible to proteolysis. Measurement of the midpoint temperature (Tm) of the helix to coil transformation for type I collagen, at neutral pH employing an increasing temperature gradient and brief proteolysis at the individual temperatures, indicated a value of 38.8 degrees C. However, determination of the Tm by employing proteolytic digestions at a constant temperature (30 degrees C) using conditions under which the nonhelical peptides are readily digested to TCA-soluble peptides while native collagen resists such proteolysis, indicated a value of 42.7 degrees C. In further studies, collagen was subjected to continuous proteolysis for up to 24 h. A large fraction of collagen was digested at 30 or 34 degrees C, temperatures well below the Tm of the helix to coil transformation. SDS-polyacrylamide gel electrophoresis of the degradation products obtained at these temperatures revealed multiple cleavage fragments. Finally, temperature double-jump experiments indicated that the destabilization of the triple helix is reversible provided that the Tm of the substrate is not exceeded. The results provide evidence for reversible and local relaxation of the collagen triple helix.  相似文献   

3.
Water-soluble random copolymers containing L-proline and N5-(4-hydroxybutyl)-L-glutamine were synthesized by copolymerization of the tripeptides H-L-Glu(OBzl)-L-Glu(OBzl)-L-Glu(OBzl)-OH and H-L-Glu(OBzl)-L-Pro-L-Glu(OBzl)-OH, using benzotriazolyl-N-oxy-tris(dimethylamino)-phosphonium hexafluorophosphate as condensing reagent, and subsequent aminolysis of the Bzl ester groups with 4-amino-1-butanol. These copolymers were found to contain significant amounts of N5-(4-hydroxybutyl)-D-glutamine, thus requiring the synthesis of a binary copolymer containing only D- and L-N5-(4-hydroxybutyl)glutamine residues in order to evaluate the possible effects of the D-residues on the conformational properties of poly(hydroxybutylglutamine-co-L-proline). The different copolymers were fractionated, and their thermally induced helix-coil transition curves were obtained in water at neutral pH. When proper corrections were applied for the helix-destabilizing properties of N5-(4-hydroxybutyl)-D-glutamine, the Zimm-Bragg parameters sigma and s for L-proline could be deduced from the melting curves of poly(hydroxybutylglutamine-co-L-proline). The results indicate that L-proline acts as a very strong helix breaker over the entire temperature range from 0 to 60 degrees C.  相似文献   

4.
Methylation at the C(alpha)-position of a Pro residue was expected to lock the preceding tertiary amide (omega) torsion angle of the resulting (alphaMe)Pro to the trans disposition and to restrict the phi,psi surface to the single region where the 3(10)/alpha-helices are found (in this five-membered ring residue phi is severely constrained to about +/-65 degrees by its cyclic nature). The results of the present X-ray diffraction work on a selected set of four N(alpha)-blocked, (alphaMe)Pro-containing, dipeptide N'-alkylamides clearly show that, although the region of the conformational map largely preferred by (alphaMe)Pro would indeed be that typical of 3(10)/alpha-helices, the semi-extended [type-II poly(Pro)(n) helix] region can also be explored by this extremely sterically demanding C(alpha)-tetrasubstituted alpha-amino acid. In addition, the known high propensity for beta-turn formation of the Pro residue is further enhanced in peptides based on its C(alpha)-methylated derivative.  相似文献   

5.
Two ORFs encoding a protein related to bacterial dimethylglycine oxidase were cloned from Pyrococcus furiosus DSM 3638. The protein was expressed in Escherichia coli, purified, and shown to be a flavoprotein amine dehydrogenase. The enzyme oxidizes the secondary amines L-proline, L-pipecolic acid and sarcosine, with optimal catalytic activity towards L-proline. The holoenzyme contains one FAD, FMN and ATP per alphabeta complex, is not reduced by sulfite, and reoxidizes slowly following reduction, which is typical of flavoprotein dehydrogenases. Isolation of the enzyme in a form containing only FAD cofactor allowed detailed pH dependence studies of the reaction with L-proline, for which a bell-shaped dependence (pK(a) values 7.0 +/- 0.2 and 7.6 +/- 0.2) for k(cat)/K(m) as a function of pH was observed. The pH dependence of k(cat) is sigmoidal, described by a single macroscopic pK(a) of 7.7 +/- 0.1, tentatively attributed to ionization of L-proline in the Michaelis complex. The preliminary crystal structure of the enzyme revealed active site residues conserved in related amine dehydrogenases and potentially implicated in catalysis. Studies with H225A, H225Q and Y251F mutants ruled out participation of these residues in a carbanion-type mechanism. The midpoint potential of enzyme-bound FAD has a linear temperature dependence (- 3.1 +/- 0.05 mV x C degrees (-1)), and extrapolation to physiologic growth temperature for P. furiosus (100 degrees C) yields a value of - 407 +/- 5 mV for the two-electron reduction of enzyme-bound FAD. These studies provide the first detailed account of the kinetic/redox properties of this hyperthermophilic L-proline dehydrogenase. Implications for its mechanism of action are discussed.  相似文献   

6.
Helix formation and stability in a signal sequence   总被引:4,自引:0,他引:4  
  相似文献   

7.
The transmissible spongiform encephalopathies are characterized by conversion of a host protein, PrP(C) (cellular prion protein), to a protease-resistant isoform, PrP(Sc) (prion protein scrapie isoform). The importance of the highly flexible, N-terminal region of PrP has recently become more widely appreciated, particularly the biological activities associated with its metal ion-binding domain and its potential to form a poly(L-proline) II (PPII) helix. Circular dichroism spectroscopy of an N-terminal peptide, PrP(37-53), showed that the PPII helix is formed in aqueous buffer; as it also contains an Xaa-Pro-Gly consensus sequence, it may act as a substrate for the collagen-modifying enzyme prolyl 4-hydroxylase. Direct evidence for this modification was obtained by mass spectrometry and Edman sequencing in recombinant mouse PrP secreted from stably transfected Chinese hamster ovary cells. Almost complete conversion of proline to 4-hydroxyproline occurs specifically at residue Pro44 of this murine protein; the same hydroxylated residue was detected, at lower levels, in PrP(Sc) from the brains of scrapie-infected mice. Cation binding and/or post-translational hydroxylation of this region of PrP may regulate its role in the physiology and pathobiology of the cell.  相似文献   

8.
Gray RD  Trent JO 《Biochemistry》2005,44(7):2469-2477
The alkaline proteinase inhibitor of Pseudomonas aeruginosa (APRin), a high-affinity inhibitor of the serralysin family of bacterial metalloproteinases, is folded into an eight-stranded beta-barrel with an N-terminal trunk linked to the barrel by a single-turn alpha-helix (helix A, residues 8-11). We show here that deletion or modification of helix A decreases the conformational stability of APRin as assessed by thermal and chemical denaturation with guanidinium chloride (GdmCl). The apparent melting temperature T(m) of the wild-type protein was 81.5 degrees C at pH 7.1 as assessed by circular dichroism and 87.5 degrees C by differential scanning calorimetry. Reduction of the single disulfide bond of APRin decreased T(m) by approximately 18 degrees C, while deletion of residues 6-10 or 1-10 lowered T(m) by approximately 8 and approximately 14 degrees C, respectively. DeltaG(u) as assessed by chemical denaturation was 7.2 kcal mol(-)(1) at 25 degrees C for wild-type APRin and was decreased by 3.4, 2.4, and 2.6 kcal mol(-)(1) by disulfide reduction, deletion of residues 6-10, and deletion of residues 1-10, respectively. In contrast, deletion of residues 1-5 had no significant effect on either T(m) or DeltaG(u). Substitution of five helix-breaking Gly or Pro residues in positions 6-10 as well as disruption of hydrogen bonds involving residues within helix A (mutants Asp10Pro and Trp15Phe) also decreased T(m) and DeltaG(u). The data suggest that a hydrogen-bonding network involving Leu11 in helix A and Trp15 located at the top of the barrel may prevent access of solvent to the interior of the barrel. Disruption of the helix could facilitate solvation of the nonpolar interior of the barrel, thereby destabilizing its folded structure. Kinetic studies with single amino acid mutants in helix A indicate that it modulates the affinity of APRin for APR primarily by influencing the dissociation rate of the inhibitor from the complex.  相似文献   

9.
Proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase (Pro/P5C dehydrogenase), a bifunctional enzyme catalyzing the two consecutive reactions of the oxidation of proline to glutamic acid, was purified from Pseudomonas aeruginosa strain PAO1. Pro/P5C dehydrogenase oxidized L-proline in an FAD-dependent reaction to L-delta 1-pyrroline-5-carboxylic acid and converted this intermediate with NAD or NADP as cosubstrates to L-glutamic acid. The purification procedure involved DEAE-cellulose chromatography, affinity chromatography on Matrex gel red A and gel filtration on Sephadex G-200. It resulted, after 40-fold purification with 11% yield, in a homogeneous preparation (greater than 98% pure). The molecular weight of the single subunit was determined as 119,000. Gel filtration of purified Pro/P5C dehydrogenase yielded a molecular weight of 242,000 while polyacrylamide gel electrophoresis under native conditions led to the appearance of two catalytically active forms of the enzyme with molecular weights of 241,000 and 470,000. Manual Edman degradation revealed proline, alanine and aspartic acid as the N-terminal amino acid sequence. Pro/P5C dehydrogenase was highly specific for the L-forms of proline and delta 1-pyrroline-5-carboxylic acid. Its apparent Km values were 45 mM for L-proline, 0.03 mM for NAD and 0.17 mM for NADP. The saturation function for delta 1-pyrroline-5-carboxylic acid was non-hyperbolic.  相似文献   

10.
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (L-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (L-proline)-type II-like helical conformation at 12 degrees C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80 degrees C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt alpha-helical structure and to interact with phospholipid bilayers through amphipathic alpha-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic stress-related damage to macromolecular structures.  相似文献   

11.
The distribution of dye-linked L-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked L-proline dehydrogenase (dye-L-proDH, L-proline:acceptor oxidoreductase) was found in the crude extract of some Thermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (alpha(2) beta(2)) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the alpha-subunit (50-kDa subunit) and the beta-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-L-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70 degrees C for 10 min, and ca. 40% of the activity still remained after heating at 80 degrees C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50 degrees C for 10 min. The enzyme exclusively catalyzed L-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for L-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Delta(1)-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of L-proline at concentrations from 0.10 to 2.5 mM using the stable dye-L-proDH was achieved.  相似文献   

12.
Relevant parameters and stereochemical consequences of helices [alpha-helix, 3(10)-helix, beta-bend ribbon spiral, gamma-helix, 2.0(5)-helix, poly(Pro)(n) type-I and -II helices, and collagen triple helix] of peptides based on alpha-amino acids for use as templates in various branches of chemistry are briefly discussed.  相似文献   

13.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

14.
We have studied the fusion activity of Sendai virus, a lipid-enveloped paramyxovirus, towards a line of adherent cells designated PC-12. Fusion was monitored by the dequenching of octadecyl-rhodamine, a fluorescent non-exchangeable probe. The results were analysed with a mass action kinetic model which could explain and predict the kinetics of virus-cell fusion. When the temperature was lowered from 37 degrees C to 25 degrees C, a sharp inhibition of the fusion process was observed, probably reflecting a constraint in the movement of viral glycoproteins at low temperatures. The rate constants of adhesion and fusion were reduced 3.5-fold and 7-fold, respectively, as the temperature was lowered from 37 degrees C to 25 degrees C. The fusion process seemed essentially pH-independent, unlike the case of liposomes and erythrocyte ghosts. Preincubation of the virus in the absence of target cell membranes at neutral and alkaline pH (37 degrees C, 30 min) did not affect the fusion process. However, a similar preincubation of the virus at pH = 5.0 resulted in marked, though slow, inhibition in fusion with the fusion rate constant being reduced 8-fold. Viral preincubation for 5 min in the same acidic conditions yielded a mild inhibition of fusogenic activity, while preincubation in the cold (4 degrees C, 30 min) did not alter viral fusion activity. These acid-induced inhibitory effects could not be fully reversed by further viral preincubation at pH = 7.4 (37 degrees C, 30 min). Changes in internal pH as well as endocytic activity of PC-12 cells had small effect on the fusion process, thus indicating that Sendai virus fuses primarily with the plasma membranes.  相似文献   

15.
Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein.  相似文献   

16.
To understand the molecular basis of the thermostability of a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1, we introduced mutations at Pro5, Pro7, Pro240 and Pro268, which are located on the surface loops of aqualysin I, by changing these amino acid residues into those found at the corresponding locations in VPR, a psychrophilic serine protease from Vibrio sp. PA-44. All mutants were expressed stably and exhibited essentially the same specific activity as wild-type aqualysin I at 40 degrees C. The P240N mutant protein had similar thermostability to wild-type aqualysin I, but P5N and P268T showed lower thermostability, with a half-life at 90 degrees C of 15 and 30 min, respectively, as compared to 45 min for the wild-type enzyme. The thermostability of P7I was decreased even more markedly, and the mutant protein was rapidly inactivated at 80 degrees C and even at 70 degrees C, with half-lives of 10 and 60 min, respectively. Differential scanning calorimetry analysis showed that the transition temperatures of wild-type enzyme, P5N, P7I, P240N and P268T were 93.99 degrees C, 83.45 degrees C, 75.66 degrees C, 91.78 degrees C and 86.49 degrees C, respectively. These results underscore the importance of the proline residues in the N- and C-terminal regions of aqualysin I in maintaining the integrity of the overall protein structure at elevated temperatures.  相似文献   

17.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

18.
A Zagari  G Némethy  H A Scheraga 《Biopolymers》1990,30(9-10):951-959
The L-azetidine-2-carboxylic acid (Aze) residue can be incorporated into proteins in the place of L-proline, of which it is the lower homologue. This substitution alters the properties of proteins, especially of collagen. Conformational constraints in N-acetyl-Aze-N'-methylamide and in several dipeptides containing Aze have been analyzed by means of energy computations. They have been compared with peptides containing Pro. The overall conformational preferences of Aze and Pro are similar, but several significant differences occur between them. In general, peptides containing Aze are somewhat more flexible than corresponding peptides containing Pro, because of a decrease in constraints caused by repulsive nonconvalent interactions of the atoms of the ring with neighboring residues. This results in an entropic effect that lessens the stability of ordered polypeptide conformations with respect to the disordered statistical coil. The collagen-like near-extended conformation is energetically less favorable for Aze than for Pro in the single residue and in dipeptides. This effect also contributes to a destabilization of the collagen triple helix. The influence of Aze on the conformation of polypeptides is discussed in the accompanying papers.  相似文献   

19.
Collagen is the most abundant protein in mammals and is widely used as a biomaterial for tissue engineering and drug delivery. We previously reported that dendrimers and linear polymers, modified with collagen model peptides (Pro‐Pro‐Gly)5, form a collagen‐like triple‐helical structure; however, its triple helicity needs improvement. In this study, a collagen‐mimic dendrimer modified with the longer collagen model peptides, (Pro‐Pro‐Gly)10, was synthesized and named PPG10‐den. Circular dichroism analysis shows that the efficiency of the triple helix formation in PPG10‐den was much improved over the original. The X‐ray diffraction analysis suggests that the higher order structure was similar to the collagen triple helix. The thermal stability of the triple helix in PPG10‐den was higher than in the PPG10 peptide itself and our previous collagen‐mimic polymers using (Pro‐Pro‐Gly)5. Interestingly, PPG10‐den also assembled at low temperatures. Self‐assembled structures with spherical and rod‐like shapes were observed by transmission electron microscopy. Furthermore, a hydrogel of PPG10‐den was successfully prepared which exhibited the sol‐gel transition around 45°C. Therefore, the collagen‐mimic dendrimer is a potential temperature‐dependent biomaterial. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 270–277, 2011.  相似文献   

20.
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100) might be crucial for maintaining the thermal stability of EhADH1. To determine whether proline substitution at this position in TbADH and CbADH would affect thermal stability, we used site-directed mutagenesis to replace the complementary residues in both enzymes with proline. The results showed that replacing Gln100 with proline significantly enhanced the thermal stability of the mesophilic ADH: DeltaT(1/2) (60 min) = + 8 degrees C (temperature of 50% inactivation after incubation for 60 min), DeltaT(1/2) (CD) = +11.5 degrees C (temperature at which 50% of the original CD signal at 218 nm is lost upon heating between 30 degrees and 98 degrees C). A His100 --> Pro substitution in the thermophilic TbADH had no effect on its thermostability. An analysis of the three-dimensional structure of the crystallized thermostable mutant Q100P-CbADH suggested that the proline residue at position 100 stabilized the enzyme by reinforcing hydrophobic interactions and by reducing the flexibility of a loop at this strategic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号