首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli periplasmic dipeptide binding protein functions in both peptide transport and taxis toward peptides. The structure of the dipeptide binding protein in complex with Gly-Leu (glycyl-L-leucine) has been determined at 3.2 A resolution. The binding site for dipeptides is designed to recognize the ligand's backbone while providing space to accommodate a variety of side chains. Some repositioning of protein side chains lining the binding site must occur when the dipeptide's second residue is larger than leucine. The protein's fold is very similar to that of the Salmonella typhimurium oligopeptide binding protein, and a comparison of the structures reveals the structural basis for the dipeptide binding protein's preference for shorter peptides.  相似文献   

2.
One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations.  相似文献   

3.
A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.  相似文献   

4.
5.
Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions.  相似文献   

6.
Protein function prediction using local 3D templates   总被引:8,自引:0,他引:8  
The prediction of a protein's function from its 3D structure is becoming more and more important as the worldwide structural genomics initiatives gather pace and continue to solve 3D structures, many of which are of proteins of unknown function. Here, we present a methodology for predicting function from structure that shows great promise. It is based on 3D templates that are defined as specific 3D conformations of small numbers of residues. We use four types of template, covering enzyme active sites, ligand-binding residues, DNA-binding residues and reverse templates. The latter are templates generated from the target structure itself and scanned against a representative subset of all known protein structures. Together, the templates provide a fairly thorough coverage of the known structures and ensure that if there is a match to a known structure it is unlikely to be missed. A new scoring scheme provides a highly sensitive means of discriminating between true positive and false positive template matches. In all, the methodology provides a powerful new tool for function prediction to complement those already in use.  相似文献   

7.
Although most proteins conform to the classical one‐structure/one‐function paradigm, an increasing number of proteins with dual structures and functions have been discovered. In response to cellular stimuli, such proteins undergo structural changes sufficiently dramatic to remodel even their secondary structures and domain organization. This “fold‐switching” capability fosters protein multi‐functionality, enabling cells to establish tight control over various biochemical processes. Accurate predictions of fold‐switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Recently, we developed a prediction method for fold‐switching proteins using structure‐based thermodynamic calculations and discrepancies between predicted and experimentally determined protein secondary structure (Porter and Looger, Proc Natl Acad Sci U S A 2018; 115:5968–5973). Here we seek to leverage the negative information found in these secondary structure prediction discrepancies. To do this, we quantified secondary structure prediction accuracies of 192 known fold‐switching regions (FSRs) within solved protein structures found in the Protein Data Bank (PDB). We find that the secondary structure prediction accuracies for these FSRs vary widely. Inaccurate secondary structure predictions are strongly associated with fold‐switching proteins compared to equally long segments of non‐fold‐switching proteins selected at random. These inaccurate predictions are enriched in helix‐to‐strand and strand‐to‐coil discrepancies. Finally, we find that most proteins with inaccurate secondary structure predictions are underrepresented in the PDB compared with their alternatively folded cognates, suggesting that unequal representation of fold‐switching conformers within the PDB could be an important cause of inaccurate secondary structure predictions. These results demonstrate that inconsistent secondary structure predictions can serve as a useful preliminary marker of fold switching.  相似文献   

8.
9.
We have been analyzing the extent to which protein secondary structure determines protein tertiary structure in simple protein folds. An earlier paper demonstrated that three-dimensional structure can be obtained successfully using only highly approximate backbone torsion angles for every residue. Here, the initial information is further diluted by introducing a realistic degree of experimental uncertainty into this process. In particular, we tackle the practical problem of determining three-dimensional structure solely from backbone chemical shifts, which can be measured directly by NMR and are known to be correlated with a protein's backbone torsion angles. Extending our previous algorithm to incorporate these experimentally determined data, clusters of structures compatible with the experimentally determined chemical shifts were generated by fragment assembly Monte Carlo. The cluster that corresponds to the native conformation was then identified based on four energy terms: steric clash, solvent-squeezing, hydrogen-bonding, and hydrophobic contact. Currently, the method has been applied successfully to five small proteins with simple topology. Although still under development, this approach offers promise for high-throughput NMR structure determination.  相似文献   

10.
Li X  Hu C  Liang J 《Proteins》2003,53(4):792-805
Protein representation and potential function are two important ingredients for studying protein folding, equilibrium thermodynamics, and sequence design. We introduce a novel geometric representation of protein contact interactions using the edge simplices from the alpha shape of the protein structure. This representation can eliminate implausible neighbors that are not in physical contact, and can avoid spurious contact between two residues when a third residue is between them. We developed statistical alpha contact potential using an odds-ratio model. A studentized bootstrap method was then introduced to assess the 95% confidence intervals for each of the 210 propensity parameters. We found, with confidence, that there is significant long-range propensity (>30 residues apart) for hydrophobic interactions. We tested alpha contact potential for native structure discrimination using several sets of decoy structures, and found that it often performs comparably with atom-based potentials requiring many more parameters. We also show that accurate geometric representation is important, and that alpha contact potential has better performance than potential defined by cutoff distance between geometric centers of side chains. Hierarchical clustering of alpha contact potentials reveals natural grouping of residues. To explore the relationship between shape and physicochemical representations, we tested the minimum alphabet size necessary for native structure discrimination. We found that there is no significant difference in performance of discrimination when alphabet size varies from 7 to 20, if geometry is represented accurately by alpha simplicial edges. This result suggests that the geometry of packing plays an important role, but the specific residue types are often interchangeable.  相似文献   

11.
Ishida T  Nakamura S  Shimizu K 《Proteins》2006,64(4):940-947
We developed a novel knowledge-based residue environment potential for assessing the quality of protein structures in protein structure prediction. The potential uses the contact number of residues in a protein structure and the absolute contact number of residues predicted from its amino acid sequence using a new prediction method based on a support vector regression (SVR). The contact number of an amino acid residue in a protein structure is defined by the number of residues around a given residue. First, the contact number of each residue is predicted using SVR from an amino acid sequence of a target protein. Then, the potential of the protein structure is calculated from the probability distribution of the native contact numbers corresponding to the predicted ones. The performance of this potential is compared with other score functions using decoy structures to identify both native structure from other structures and near-native structures from nonnative structures. This potential improves not only the ability to identify native structures from other structures but also the ability to discriminate near-native structures from nonnative structures.  相似文献   

12.
Fan H  Periole X  Mark AE 《Proteins》2012,80(7):1744-1754
The efficiency of using a variant of Hamiltonian replica‐exchange molecular dynamics (Chaperone H‐replica‐exchange molecular dynamics [CH‐REMD]) for the refinement of protein structural models generated de novo is investigated. In CH‐REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH‐REMD approach sampled structures in which the root‐mean‐square deviation (RMSD) of secondary structure elements (SSE‐RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near‐native conformations was also examined. Little correlation between the SSE‐RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE‐RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced‐sampling techniques such as CH‐REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near‐native structures are still needed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein ‘structure prediction’ problem.  相似文献   

14.
Cai XH  Jaroszewski L  Wooley J  Godzik A 《Proteins》2011,79(8):2389-2402
The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.  相似文献   

15.
16.
C A Orengo  N P Brown  W R Taylor 《Proteins》1992,14(2):139-167
A fast method is described for searching and analyzing the protein structure databank. It uses secondary structure followed by residue matching to compare protein structures and is developed from a previous structural alignment method based on dynamic programming. Linear representations of secondary structures are derived and their features compared to identify equivalent elements in two proteins. The secondary structure alignment then constrains the residue alignment, which compares only residues within aligned secondary structures and with similar buried areas and torsional angles. The initial secondary structure alignment improves accuracy and provides a means of filtering out unrelated proteins before the slower residue alignment stage. It is possible to search or sort the protein structure databank very quickly using just secondary structure comparisons. A search through 720 structures with a probe protein of 10 secondary structures required 1.7 CPU hours on a Sun 4/280. Alternatively, combined secondary structure and residue alignments, with a cutoff on the secondary structure score to remove pairs of unrelated proteins from further analysis, took 10.1 CPU hours. The method was applied in searches on different classes of proteins and to cluster a subset of the databank into structurally related groups. Relationships were consistent with known families of protein structure.  相似文献   

17.
A long standing goal in protein structure studies is the development of reliable energy functions that can be used both to verify protein models derived from experimental constraints as well as for theoretical protein folding and inverse folding computer experiments. In that respect, knowledge-based statistical pair potentials have attracted considerable interests recently mainly because they include the essential features of protein structures as well as solvent effects at a low computing cost. However, the basis on which statistical potentials are derived have been questioned. In this paper, we investigate statistical pair potentials derived from protein three-dimensional structures, addressing in particular questions related to the form of these potentials, as well as to the content of the database from which they are derived. We have shown that statistical pair potentials depend on the size of the proteins included in the database, and that this dependence can be reduced by considering only pairs of residue close in space (i.e., with a cutoff of 8 Å). We have shown also that statistical potentials carry a memory of the quality of the database in terms of the amount and diversity of secondary structure it contains. We find, for example, that potentials derived from a database containing α-proteins will only perform best on α-proteins in fold recognition computer experiments. We believe that this is an overall weakness of these potentials, which must be kept in mind when constructing a database. Proteins 31:139–149, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence–structure–function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence–structure–function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information. Proteins 2015; 83:1450–1461. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
We describe the derivation and testing of a knowledge-based atomic environment potential for the modeling of protein structural energetics. An analysis of the probabilities of atomic interactions in a dataset of high-resolution protein structures shows that the probabilities of non-bonded inter-atomic contacts are not statistically independent events, and that the multi-body contact frequencies are poorly predicted from pairwise contact potentials. A pseudo-energy function is defined that measures the preferences for protein atoms to be in a given microenvironment defined by the number of contacting atoms in the environment and its atomic composition. This functional form is tested for its ability to recognize native protein structures amongst an ensemble of decoy structures and a detailed relative performance comparison is made with a number of common functions used in protein structure prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号