首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

2.
The effects of central (intracerebroventricular, 9 g fish–1) and peripheral (intraperitoneal, 4 mg kg–1) administration of bovine insulin, as well as the effect of hyperglycemia (oral administration of 1 g glucose fish–1) and brain glucodeprivation (intracerebroventricular administration of 2-deoxy-D-glucose) on food intake and levels of brain (telencephalon, preoptic area, and hypothalamus) biogenic amines (serotonin, dopamine, noradrenaline and their metabolites 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid) were assessed on rainbow trout (Oncorhynchus mykiss). Treatment with insulin inhibited food intake after 26 or 52 h of administration, central or peripheral, respectively. This effect was still apparent after 74 h of central treatment. When assessing changes in the levels of biogenic amines after 26 h of central insulin administration, there was a significant increase in the levels of 5-hydroxyindoleacetic acid, and in the ratio of dihydroxyphenylacetic acid/dopamine of insulin-treated fish, in telencephalon and hypothalamus, respectively. These results suggest that peripherally administered insulin is involved in a feedback regulatory loop with food intake and body weight. Moreover, at least part of the effects of insulin could be mediated by hypothalamic dopaminergic activity. The strong hyperglycemia induced by oral administration of glucose did not induce significant changes either on food intake (control versus treated), or in brain levels of biogenic amines. The intracerebroventricular administration of 2-deoxy-D-glucose induced an increase in food intake without altering plasma glucose levels, suggesting that fish brain possesses a control system for detecting hypoglycemia in plasma and therefore keep brain glucose levels high enough for brain function.Abbreviations 2-DG 2 Deoxy-D-glucose - 5-HIAA 5-Hydroxyindoleacetic acid - 5-HT 5-Hydroxytryptamine or serotonin - DA Dopamine - DOPAC Dihydroxyphenylacetic acid - EDTA Ethylenediaminetetraacetic acid - FI Food intake - HPLC High pressure liquid chromatography - icv Intracerebroventricular - i.p. Intraperitoneal - MS 222 3-Aminobenzoic acid ethyl esther methanesulfonate salt - NA Noradrenaline  相似文献   

3.
The effect of chronic treatment with tyroxine (T4) or propylthiouracile (PTU) on the turnover of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) has been studied in various areas of the rat brain (brain stem, hypothalamus, striatum and "rest of the brain"). The turnover of NE and DA was determined by the decay in endogenous levels after inhibition of tyrosine hydroxylase by alpha-methylparatyrosine and the turnover of 5-HT was evaluated by the initial accumulation of endogenous 5-HT after inhibition of monoamine oxydase by pargyline. T4 treatment accelerated the release of DA from the striatum but had no significant effects on NA release in the various cerebral areas : nevertheless the NE endogenous level was significantly reduced in the brain stem. PTU treatment delayed the release of DA and NA only from the "rest of the brain". Concerning 5-HT, the only significant variation was observed in the hypothalamus of PTU-treated rats and implied increased turnover. The possible relations between the changes in cerebral monoamines turnover and the behavioural alterations which are observed in thyroid disfunction are discussed.  相似文献   

4.
The levels of 5-hydroxytryptamine and its main metabolite 5-hydroxyindoleacetic acid were assessed in two brain regions, hypothalamus and telencephalon, of rainbow trout (Oncorhynchus mykiss) submitted to increases or decreases in plasma glucose levels through different experimental approaches. Thus, intraperitoneal glucose treatment (500 mg kg(-1)) increased 5-hydroxytryptamine telencephalic levels. Long-term food deprivation up to 3 weeks significantly increased hypothalamic (2 weeks and 3 weeks) and telencephalic (1 week, 2 weeks, and 3 weeks) levels of 5-hydroxyindoleacetic acid, whereas the ratio 5-hydroxyindoleacetic acid/5-hydroxytryptamine significantly increased throughout the food-deprivation period assessed. Intraperitoneal treatment with bovine insulin (4 mg kg(-1)) decreased the 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio in hypothalamus after 1 h. Intraperitoneal administration of fenfluramine (3 mg kg(-1)) caused a depression in food intake coincident with a significant decrease of the hypothalamic 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio. These data are discussed in the context of the involvement of serotonergic system in the control of food intake in rainbow trout.  相似文献   

5.
After the intraventricular injection of 6-hydroxydopamine (6-OHDA), there was a long lasting reduction in the brain concentrations of noradrenaline (NA) and dopamine (DA). The brain concentration of NA was affected by lower doses of 6-OHDA than were required to deplete DA. A high dose of 6-OHDA which depleted the brain of NA and DA by 81 per cent and 66 per cent respectively, had no significant effect on brain concentrations of 5-hydroxytryptamine (5-HT) or γ-aminobutyric acid (GABA). The fall in catecholamines was accompanied by a long lasting reduction in the activities of tyrosine hydroxylase and DOPA decarboxylase in the hypothalamus and striatum, areas in the brain which are rich in catecholamine containing nerve endings. There was, however, no consistent effect on catechol-O-methyl transferase or monamine oxidase activity in these brain regions. The initial accumulation of [3H]NA into slices of the hypothalamus and striatum was markedly reduced 22–30 days after 6-OHDA treatment. These results are consistent with the evidence in the peripheral sympathetic nervous system that 6-OHDA causes a selective destruction of adrenergic nerve endings and suggest that this compound may have a similar destructive effect on catecholamine neurones in the CNS.  相似文献   

6.
Juvenile Senegalese sole Solea senegalensis were subjected for short periods to two different types of handling‐related stress: air exposure stress and net handling stress. The S. senegalensis were sacrificed 2 and 24 h after the stress events and the levels of serotonin (5‐HT), noradrenaline (NA), dopamine (DA) and their respective major metabolites, 5‐hydroxyindoleacetic acid (5‐HIAA), 3‐methoxy‐4‐hydroxyphenylglycol (MHPG) and 3,4‐dihydroxyphenylacetic acid (DOPAC), were measured in three brain regions (telencephalon, hypothalamus and optic tectum) and compared with those in control, non‐stressed S. senegalensis. Neither type of stress caused any significant alteration of serotoninergic activity (5‐HIAA:5‐HT ratio) or NA levels. Dopaminergic activity (DOPAC:DA ratio) was lower in stressed fish in all of the brain regions studied. For both air exposure stress and net handling stress, DA levels were significantly higher (P < 0·05) than in the control S. senegalensis. In addition, the higher DA levels after net handling stress were always significantly higher (P < 0·05) than those observed after acute air exposure stress, except in the telencephalon after 24 h. The significantly lower DOPAC:DA ratio (P < 0·05) in all of the brain regions studied was only observed in response to net handling stress.  相似文献   

7.
The effect of medroxyprogesterone acetate (MPA) on brain monoamine levels and monoamine oxidase (MAO) activity was studied in adult, healthy, non-pregnant female rats. MpA was injected in a single dose of 100 mg/kg i.m. Dopamine (DA), noradrenaline (NA), 5-hydroxytryptamine (5-HT) levels and MAO activity were estimated fluorometrically in rat brian. No change in DA, NA, 5-HT or MAO activity was observed after 7 days of MPA treatment while a significant decrease in DA levels along with a significant increase in MAO activity was observed after 21 days of MPA treatment. However, there was no change in NA and 5-HT levels after 21 days of MPA administration. The selective reduction of DA by MPA could be due to an increase in MAO-B activity. MPA does not appear to increase MAO-A activity because neither of the specific substrates (NA and 5-HT) of MAO-A was found to be decreased inspite of the increase in MAO activity as estimated by the kynuramine method. These findings suggest the importance of MAO-B also in DA metabolism in rat brain.  相似文献   

8.
1. In the brain of Salmo gairdneri, the content of dopamine (DA), norepinephrine (NE), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) depends upon the location in the brain (hypothalamus, telencephalon or mesencephalon). 2. The origin of feed protein (from animal or vegetal origin) influences the level of the various monoamines studied in different brain structures. 3. Hypoxia (60% oxygen saturation in water) causes modifications of 5-HT and catecholamine (DA, NE) contents in different brain structures, depending upon the diet.  相似文献   

9.
The effect of acute administration of 50% standardised ethanolic extract of Indian Hypericum perforatum (IHp) was studied on the rat brain concentrations of monoamines and their metabolites in five different brain regions, viz. hypothalamus, hippocampus, striatum, pons-medulla and frontal cortex by a HPLC technique. IHp extract was administered at the doses of 50 and 200 mg/kg, p.o. and the brain monoamines were assayed after 30 min of the treatment. IHp treatment significantly decreased the levels of serotonin (5-HT) and its metabolite 5-hydroxy indole acetic acid (5-HIAA) and 5-HT turnover in all the brain regions assayed. On the other hand, IHp treatment significantly augmented the levels of norepinephrine (NE) and its metabolite methylhydroxy phenyl glycol (MHPG) and NE turnover in all the brain regions studied. Similarly, the levels of dopamine (DA) were also significantly augmented in the hypothalamus, striatum and frontal cortex. Likewise, the levels of dihydroxyphenyl acetic acid (DOPAC), the major metabolite of DA, were also increased in these brain areas. Pharmacological studies with IHp extract have shown two major behavioural actions, namely, anxiolytic and antidepressant effects. The present findings tend to rationalise these observations, reduced 5-HT activity being consonant with anxiolytic and increased NA and DA activity being consonant with antidepressant action.  相似文献   

10.
Baltic salmon Salmo salar females displaying wiggling behaviour had significantly lower (P<0.05) hepatic and ovarian thiamine (vitamin B1) concentrations than the normal females, confirming that they suffered from a thiamine deficiency. A significantly (P<0.05) increased monoaminergic activity was found in the telencephalon and the hypothalamus of the wiggling individuals as indicated by [5-hydroxyindoleacetic acid (5-HIAA)]: [5-hydroxytryptamine (5-HT)] and [3,4-dihydroxyphenylacetic acid (DOPAC)]: [dopamine (DA)] ratios. The 5-HIAA concentrations of wiggling individuals were significantly (P<0.05) higher in the telencephalon and the hypothalamus compared to normal fish. Wiggling fish showed significantly (P<0.05) higher concentrations of the DA metabolite DOPAC in the hypothalamus and the brain stem compared to normal fish. Furthermore, the brain stem in wiggling fish contained significantly (P<0.05) less 5-HT than in normal individuals, which was also reflected in a significant (P<0.05) increase in the (5-HIAA): (5-HT) ratio. These results demonstrate an increased serotonergic and dopaminergic activity in wiggling compared to normal fish. The altered monoaminergic activity may be directly related to altered brain thiamine metabolism, but a general stress caused by thiamine deficiency and an inability to regulate swim bladder inflation may contribute. Furthermore, a changed brain monoaminergic activity may contribute to the behaviour characterizing wiggling fish.  相似文献   

11.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

12.
Abstract: Neurochemical changes in the ventromedial hypothalamus (VMH) after a single intravenous injection of streptozotocin were examined, using in vivo brain microdialysis under free-moving conditions. Although streptozotocin-induced diabetes produced significant decreases in extracellular concentrations of noradrenaline (NA), serotonin (5-HT), and their metabolites in the VMH, the ratios of 3-methoxy-4-hydroxyphenylglycol/NA and 5-hydroxyindoleacetic acid (5-HIAA)/5-HT were increased. Experimental diabetes led to a pronounced increase in extracellular GABA, which correlated strongly with the decrease in dialysate levels of NA, and to a smaller extent with that of 5-HT. A modification of dopamine (DA) metabolism was induced in the VMH of diabetic rats, whereas there was no change in dialysate DA levels. Daily injections of insulin were able to restore their levels to normal in the areas tested in the microdialysis study. The equal increases in dialysate 5-HT and 5-HIAA and the better restoration of the 5-HIAA/5-HT ratio after insulin therapy indicate that serotonergic activity may depend on the levels of circulating insulin more than on noradrenergic activity. Circulating NA was reduced in streptozotocin-diabetic rats, suggesting that the diabetes-induced reduction in sympathetic activity is accompanied by decreases in NA, or 5-HT, or both, in the VMH.  相似文献   

13.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

14.
Various brain regions of male RHA/Verh and RLA/Verh rats were dissected out and deep-frozen immediately after 30 min in a shuttle box involving a) no shock (control), b) 40 inescapable shocks or c) 40 avoidable shocks. The RHA/Verh rats used in the "c" category exhibited about 80-85% learned avoidance. 5-HT, 5-HIAA, NA, MHPG-SO4, DA, DOPAC and HVA levels were subsequently measured in selected regions. NA levels were considerably reduced in the hypothalamus and pons/medulla of both selected lines of rats after acute shock stress, supporting the results of numerous studies which have indicated that NA turnover is nonspecifically increased by all types of stress, at least in those regions. An increase in cortical MHPG-SO4 and a reduction in hypothalamic 5-HT seen after avoidance learning also occurred after shock stress in RHA/Verh rats. Whereas RLA/Verh rats showed an increased metabolism of 5-HT in the hypothalamus and pons/medulla after shock stress, RHA/Verh rats showed the opposite response in the hypothalamus after the same treatment. A reduction in 5-HT metabolism was also evident in RHA/Verh rats, after avoidance learning, in the cortex, hippocampus and hypothalamus. These results indicated, pending further studies regarding, for example, possible genetic differences in tryptophan uptake and utilization, that 5-HT probably plays at least a modulatory role in the reaction to stress, and in avoidance behavior. That role may be either active or passive, depending upon the emotional status of the subjects. In regard to the DA responses measured in striatum and hypothalamus of the two rat lines, some divergent inter-treatment tendencies, as well as some similarities, were seen in DA metabolism in both regions, but almost none of the differences were significant.  相似文献   

15.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

16.
Using High Performance Liquid Chromatography coupled with electrochemical detection the post-mortem stability of noradrenaline (NA), dopamine (DA), serotonin (5-HT) and 5-hydroxy indole acetic acid (5-HIAA) were examined in the rat hypothalamus, amygdala, cerebral cortex, cerebellum and corpus striatum over an 8 hour time period. Changes in concentrations of the different neurotransmitters were less than it might be expected. The significant changes were: a. A fall in NA levels in the cerebral cortex by 4 hours and in the hypothalamus at 8 hours. b. A reduction in DA concentrations in the corpus striatum at 8 hours but a two fold rise of levels in the hypothalamus at 1 and 2 hours. c. A four-fold increase in 5-HT concentrations in the amygdala throughout the 8 hours studied. The results indicate that for comparative studies on post-mortem brain tissue correction factors should be employed to take into account differential changes in the concentrations of the various neurotransmitters.  相似文献   

17.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

18.
《Chronobiology international》2013,30(10):1449-1457
Brain monoamines – such as noradrenaline (NA), dopamine (DA) and serotonin (5-HT) – regulate several important physiological functions, including the circadian rhythm. The purpose of this study was to examine changes in NA, DA and 5-HT levels in various brain regions and their effect on core body temperature (Tc), heart rate (HR) and locomotor activity (Act) in rats following exposure to an artificial light/dark (LD) cycle. For this, male Wistar rats were housed at an ambient temperature (Ta) of 23?°C and 50% relative humidity with free access to food and water. Rats were exposed to either natural (12?h:12?h) or artificial (6?h:6?h) LD cycles for 1 month, after which each brain region was immediately extracted and homogenized to quantify the amounts of NA, DA and 5-HT by high-performance liquid chromatography. Behavioural changes were also monitored by the ambulatory activity test (AAT). Notably, we found that artificial LD cycles disrupted the physiological circadian rhythms of Tc, HR and Act. Although the 5-HT levels of rats with a disrupted circadian rhythm decreased in cell bodies (dorsal and median raphe nuclei) and projection areas (frontal cortex, caudate putamen, preoptic area and suprachiasmatic nucleus) relative to the control group, NA levels increased both in the cell body (locus coeruleus) and projection area (paraventricular hypothalamus). No significant changes were found with respect to DA. Moreover, circadian rhythm-disrupted rats also showed anxious behaviours in AAT. Collectively, the results of this study suggest that the serotonergic and noradrenergic systems, but not the dopaminergic system, are affected by artificial LD cycles in brain regions that control several neural and physiological functions, including the regulation of physiological circadian rhythms, stress responses and behaviour.  相似文献   

19.
There is increasing evidence that growth hormone (GH) has important behavioral effects in fish, but the underlying mechanisms are not well understood. To investigate if peripherally administered GH influences the monoaminergic activity of the brain, and how this is correlated to behavior, juvenile rainbow trout were implanted intraperitoneally with ovine GH. Fish were either kept isolated or in groups of five. The physical activity and food intake of the isolated fish were observed after 1 and 7 days, when brains were also sampled. The content of serotonin, dopamine, and noradrenaline and their metabolites in hypothalamus, telencephalon, optic tectum, and brain stem was then analyzed. For fish kept isolated for 7 days following implant, GH increased swimming activity and the levels of the dopamine metabolite 3, 4-hydroxy-phenylacetic acid (DOPAC) were higher in all brain parts examined. In the optic tectum, the levels of the dopamine metabolite homovanillic acid (HVA) were lowered by the GH treatment. One-day GH implant did not affect behavior or monoamine levels of isolated fish. In the fish kept in groups, a 7-day GH implant increased the hypothalamic levels of DOPAC, but not in the other brain parts examined, which may indicate an effect on the brain dopaminergic system from social interactions. It can be concluded that peripherally administered GH may function as a neuromodulator, affecting the dopaminergic activity of the rainbow trout brain, and this is associated with increased swimming activity.  相似文献   

20.
We have previously shown that differences in life span among members of Swiss mouse populations appear to be related to their exploration of a T-maze, with a slow exploration ("slow mice") being linked to increased levels of emotionality/anxiety, an impaired immune function and a shorter life span. Thus, we proposed the slow mice as prematurely ageing mice (PAM). We have now compared the monoaminergic systems of the PAM and of the non-prematurely ageing mice (NPAM), in discrete brain regions. PAM had decreased noradrenaline (NA) levels in all the brain regions analysed, whereas the 3-methoxy-4-hydroxyphenyl glycol (MHPG)/NA ratios were not significantly modified. PAM also showed decreased serotonine (5-HT) levels in hypothalamus, striatum and midbrain, as well as increased 5-hydroxyindol-3-acetic acid (5-HIAA)/5-HT ratios in hypothalamus and hippocampus. The dopamine (DA) content was lower in PAM in most regions, whereas the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and homovanillic acid (HVA)/DA ratios were either increased or unchanged depending on the region analysed. In most cases, the differences between PAM and NPAM involved both sexes. One exception was the hypothalamus where the differences only affected the male mice. The neurochemical alterations found in PAM resemble some changes reported for aged animals and are related with their behavioural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号