首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu X  Brooks BR 《Biophysical journal》2004,86(4):1946-1958
The beta-hairpin fold mechanism of a nine-residue peptide, which is modified from the beta-hairpin of alpha-amylase inhibitor tendamistat (residues 15-23), is studied through direct folding simulations in explicit water at native folding conditions. Three 300-nanosecond self-guided molecular dynamics (SGMD) simulations have revealed a series of beta-hairpin folding events. During these simulations, the peptide folds repeatedly into a major cluster of beta-hairpin structures, which agree well with nuclear magnetic resonance experimental observations. This major cluster is found to have the minimum conformational free energy among all sampled conformations. This peptide also folds into many other beta-hairpin structures, which represent some local free energy minimum states. In the unfolded state, the N-terminal residues of the peptide, Tyr-1, Gln-2, and Asn-3, have a confined conformational distribution. This confinement makes beta-hairpin the only energetically favored structure to fold. The unfolded state of this peptide is populated with conformations with non-native intrapeptide interactions. This peptide goes through fully hydrated conformations to eliminate non-native interactions before folding into a beta-hairpin. The folding of a beta-hairpin starts with side-chain interactions, which bring two strands together to form interstrand hydrogen bonds. The unfolding of the beta-hairpin is not simply the reverse of the folding process. Comparing unfolding simulations using MD and SGMD methods demonstrate that SGMD simulations can qualitatively reproduce the kinetics of the peptide system.  相似文献   

2.
We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 A(2) approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 A(2), comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to peptide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

3.
Song MK  Kim SY  Lee J 《Biophysical chemistry》2005,115(2-3):201-207
The structural characteristics of the 13-residue compstatin molecule are investigated using the conformational space annealing (CSA) method with CHARMM force field and the GBSA continuum solvent model. In order to sample conformations in the energy range of the minimized NMR structures, we have used the stopping criterion to the CSA search when a conformation whose energy is less than -490 kcal/mol is found. With this stopping criterion, a great variety of conformations are generated around experimentally known structures. Twenty independent CSA runs starting from random states find 1000 representative conformations in the energy landscape of the compstatin, which are classified into thirty-one structural families. The majority of the conformations (94.4%) are in the coil state. Other conformers containing a 3(10)-helix, a pi-helix, a beta-hairpin, and an alpha-helix are also found.  相似文献   

4.
Abstract

We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 Å2, approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 ·A2, comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to pep- tide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

5.
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution.  相似文献   

6.
The peptide TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase adopts a helical conformation in the crystal structure and is a site for two hydrated helical segments, which are thought to be helical folding intermediates. Overlapping sequences of four to five residues from the peptide, sample both helical and strand conformations in known protein structures, which are dissimilar to glyceraldehyde-3-phosphate dehydrogenase suggesting that the peptide may have a structural ambivalence. Molecular dynamics simulations of the peptide sequence performed for a total simulation time of 1.2 micros, starting from the various initial conformations using GROMOS96 force field under NVT conditions, show that the peptide samples a large number of conformational forms with transitions from alpha-helix to beta-hairpin and vice versa. The peptide, therefore, displays a structural ambivalence. The mechanism from alpha-helix to beta-hairpin transition and vice versa reveals that the compact bends and turns conformational forms mediate such conformational transitions. These compact structures including helices and hairpins have similar hydrophobic radius of gyration (Rgh) values suggesting that similar hydrophobic interactions govern these conformational forms. The distribution of conformational energies is Gaussian with helix sampling lowest energy followed by the hairpins and coil. The lowest potential energy of the full helix may enable the peptide to take up helical conformation in the crystal structure of the glyceraldehyde-3-phosphate dehydrogenase, even though the peptide has a preference for hairpin too. The relevance of folding and unfolding events observed in our simulations to hydrophobic collapse model of protein folding are discussed.  相似文献   

7.
Daidone I  Amadei A  Di Nola A 《Proteins》2005,59(3):510-518
The folding of the amyloidogenic H1 peptide MKHMAGAAAAGAVV taken from the syrian hamster prion protein is explored in explicit aqueous solution at 300 K using long time scale all-atom molecular dynamics simulations for a total simulation time of 1.1 mus. The system, initially modeled as an alpha-helix, preferentially adopts a beta-hairpin structure and several unfolding/refolding events are observed, yielding a very short average beta-hairpin folding time of approximately 200 ns. The long time scale accessed by our simulations and the reversibility of the folding allow to properly explore the configurational space of the peptide in solution. The free energy profile, as a function of the principal components (essential eigenvectors) of motion, describing the main conformational transitions, shows the characteristic features of a funneled landscape, with a downhill surface toward the beta-hairpin folded basin. However, the analysis of the peptide thermodynamic stability, reveals that the beta-hairpin in solution is rather unstable. These results are in good agreement with several experimental evidences, according to which the isolated H1 peptide adopts very rapidly in water beta-sheet structure, leading to amyloid fibril precipitates [Nguyen et al., Biochemistry 1995;34:4186-4192; Inouye et al., J Struct Biol 1998;122:247-255]. Moreover, in this article we also characterize the diffusion behavior in conformational space, investigating its relations with folding/unfolding conditions.  相似文献   

8.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the alpha-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

9.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the α-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

10.
A combination of conformational search, energy minimization, and energetic evaluation using a continuum solvent treatment has been employed to study the stability of various conformations of the DNA fragment d(CGCAGAA)/d(TTCGCG) containing a single adenine bulge. The extra-helical (looped-out) bulge conformation derived from a published x-ray structure and intra-helical (stacked bulge base) model structures partially based on nuclear magnetic resonance (NMR) data were used as start structures for the conformational search. Solvent-dependent contributions to the stability of the conformations were calculated from the solvent exposed molecular surface area and by using the finite difference Poisson-Boltzmann approach. Three classes (I-III) of bulge conformations with calculated low energies can be distinguished. The lowest-energy conformations were found in class I, corresponding to structures with the bulge base stacked between flanking helices, and class II, composed of structures forming a triplet of the bulge base and a flanking base pair. All extra-helical bulge structures, forming class III, were found to be less stable compared with the lowest energy structures of class I and II. The results are consistent with NMR data on an adenine bulge in the same sequence context indicating an intra-helical or triplet bulge conformation in solution. Although the total energies and total electrostatic energies of the low-energy conformations show only relatively modest variations, the energetic contributions to the stability were found to vary significantly among the classes of bulge structures. All intra-helical bulge structures are stabilized by a more favorable Coulomb charge-charge interaction but destabilized by a larger electrostatic reaction field contribution compared with all extra-helical and most triplet bulge structures. Van der Waals packing interactions and nonpolar surface-area-dependent contributions appear to favor triplet class II structures and to a lesser degree also the intra-helical stacked bulge conformations. The large conformational variation found for class III conformers might add a favorable entropic contribution to the stability of the extra-helical bulge form.  相似文献   

11.
Mallik B  Lambris JD  Morikis D 《Proteins》2003,53(1):130-141
Compstatin is a 13-residue cyclic peptide that has the potential to become a therapeutic agent against unregulated complement activation. In our effort to understand the structural and dynamic characteristics of compstatin that form the basis for rational and combinatorial optimization of structure and activity, we performed 1-ns molecular dynamics (MD) simulations. We used as input in the MD simulations the ensemble of 21 lowest energy NMR structures, the average minimized structure, and a global optimization structure. At the end of the MD simulations we identified five conformations, with populations ranging between 9% and 44%. These conformations are as follows: 1) coil with alphaR-alphaR beta-turn, as was the conformation of the initial ensemble of NMR structures; 2) beta-hairpin with epsilon-alphaR beta-turn; 3) beta-hairpin with alphaR-alphaR beta-turn; 4) beta-hairpin with alphaR-beta beta-turn; and 5) alpha-helical. Conformational switch was possible with small amplitude backbone motions of the order of 0.1-0.4 A and free energy barrier crossing of 2-11 kcal/mol. All of the 21 MD structures corresponding to the NMR ensemble possessed a beta-turn, with 14 structures retaining the alphaR-alphaR beta-turn type, but the average minimized structure and the global optimization structures were converted to alpha-helical conformations. Overall, the MD simulations have aided to gain insight into the conformational space sampled by compstatin and have provided a measure of conformational interconversion. The calculated conformers will be useful as structural and possibly dynamic templates for optimization in the design of compstatin using structure-activity relations (SAR) or dynamics-activity relations (DAR).  相似文献   

12.
Understanding the conformational transitions that trigger the aggregation and amyloidogenesis of otherwise soluble peptides at atomic resolution is of fundamental relevance for the design of effective therapeutic agents against amyloid-related disorders. In the present study the transition from ideal alpha-helical to beta-hairpin conformations is revealed by long timescale molecular dynamics simulations in explicit water solvent, for two well-known amyloidogenic peptides: the H1 peptide from prion protein and the Abeta(12-28) fragment from the Abeta(1-42) peptide responsible for Alzheimer's disease. The simulations highlight the unfolding of alpha-helices, followed by the formation of bent conformations and a final convergence to ordered in register beta-hairpin conformations. The beta-hairpins observed, despite different sequences, exhibit a common dynamic behavior and the presence of a peculiar pattern of the hydrophobic side-chains, in particular in the region of the turns. These observations hint at a possible common aggregation mechanism for the onset of different amyloid diseases and a common mechanism in the transition to the beta-hairpin structures. Furthermore the simulations presented herein evidence the stabilization of the alpha-helical conformations induced by the presence of an organic fluorinated cosolvent. The results of MD simulation in 2,2,2-trifluoroethanol (TFE)/water mixture provide further evidence that the peptide coating effect of TFE molecules is responsible for the stabilization of the soluble helical conformation.  相似文献   

13.
The energy landscape of a peptide [Ace-Lys-Gln-Cys-Arg-Glu-Arg-Ala-Nme] in explicit water was studied with a multicanonical molecular dynamics simulation, and the AMBER parm96 force field was used for the energy calculation. The peptide was taken from the recognition helix of the DNA-binding protein, c-MYB: A rugged energy landscape was obtained, in which the random-coil conformations were dominant at room temperature. The CD spectra of the synthesized peptide revealed that it is in the random state at room temperature. However, the 300 K canonical ensemble, Q(300K), contained alpha-helix, 3(10)-helix, beta-turn, and beta-hairpin structures with small but notable probabilities of existence. The complete alpha-helix, imperfect alpha-helix, and random-coil conformations were separated from one another in the conformational space. This means that the peptide must overcome energy barriers to form the alpha-helix. The overcoming process may correspond to the hydrogen-bond rearrangements from peptide-water to peptide-peptide interactions. The beta-turn, imperfect 3(10)-helix, and beta-hairpin structures, among which there are no energy barriers at 300 K, were embedded in the ensemble of the random-coil conformations. Two types of beta-hairpin with different beta-turn regions were observed in Q(300K). The two beta-hairpin structures may have different mechanisms for the beta-hairpin formation. The current study proposes a scheme that the random state of this peptide consists of both ordered and disordered conformations. In contrast, the energy landscape obtained from the parm94 force field was funnel like, in which the peptide formed the helical conformation at room temperature and random coil at high temperature.  相似文献   

14.
The stability and (un)folding of the 19-residue peptide, SCVTLYQSWRYSQADNGCA, corresponding to the first beta-hairpin (residues 10 to 28) of the alpha-amylase inhibitor tendamistat (PDB entry 3AIT) has been studied by molecular dynamics simulations in explicit water under periodic boundary conditions at several temperatures (300 K, 360 K and 400 K), starting from various conformations for simulation lengths, ranging from 10 to 30 ns. Comparison of trajectories of the reduced and oxidized native peptides reveals the importance of the disulphide bridge closing the beta-hairpin in maintaining a proper turn conformation, thereby insuring a proper side-chain arrangement of the conserved turn residues. This allows rationalization of the conservation of those cysteine residues among the family of alpha-amylase inhibitors. High temperature simulations starting from widely different initial configurations (native beta-hairpin, alpha and left-handed helical and extended conformations) begin sampling similar regions of the conformational space within tens of nanoseconds, and both native and non-native beta-hairpin conformations are recovered. Transitions between conformational clusters are accompanied by an increase in energy fluctuations, which is consistent with the increase in heat capacity measured experimentally upon protein folding. The folding events observed in the various simulations support a model for beta-hairpin formation in which the turn is formed first, followed by hydrogen bond formation closing the hairpin, and subsequent stabilization by side-chain hydrophobic interactions.  相似文献   

15.
We have investigated the folding of polyalanine by combining discontinuous molecular dynamics simulation with our newly developed off-lattice intermediate-resolution protein model. The thermodynamics of a system containing a single Ac-KA(14)K-NH(2) molecule has been explored by using the replica exchange simulation method to map out the conformational transitions as a function of temperature. We have also explored the influence of solvent type on the folding process by varying the relative strength of the side-chain's hydrophobic interactions and backbone hydrogen bonding interactions. The peptide in our simulations tends to mimic real polyalanine in that it can exist in three distinct structural states: alpha-helix, beta-structures (including beta-hairpin and beta-sheet-like structures), and random coil, depending upon the solvent conditions. At low values of the hydrophobic interaction strength between nonpolar side-chains, the polyalanine peptide undergoes a relatively sharp transition between an alpha-helical conformation at low temperatures and a random-coil conformation at high temperatures. As the hydrophobic interaction strength increases, this transition shifts to higher temperatures. Increasing the hydrophobic interaction strength even further induces a second transition to a beta-hairpin, resulting in an alpha-helical conformation at low temperatures, a beta-hairpin at intermediate temperatures, and a random coil at high temperatures. At very high values of the hydrophobic interaction strength, polyalanines become beta-hairpins and beta-sheet-like structures at low temperatures and random coils at high temperatures. This study of the folding of a single polyalanine-based peptide sets the stage for a study of polyalanine aggregation in a forthcoming paper.  相似文献   

16.
Structural prediction of peptides bound to MHC class I   总被引:1,自引:0,他引:1  
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.  相似文献   

17.
We have applied random-search, energy minimization and molecular dynamics simulations to investigate the structural aspects of the interaction of N-acetyl-L-prolyl-D-alanyl-L-alanine-N'-methylamide with Ca2+. Spectral data on related peptides had suggested that the beta-turn conformation might be a prerequisite for the binding of cation ion by such short linear peptides. In order to relate the conformational characteristics with the Ca(2+)-binding affinities of these peptides, the molecular events involved in cation binding need to be understood. We have addressed this problem in this study by using a systematic approach that involved the following steps. First, a random search technique was used to generate a large population of conformers for the free peptide in the absence of Ca2+. Next, the energies of these conformers were computed. Conformations with energies within 4 kcal/mol of the global minimum were analysed and found to fall into four main groups characterized by the presence of different types of hydrogen-bonded structures including single and consecutive beta-turns. The energies for interconversion of conformers from one group to another were computed and found to be relatively small (< 10 kcal/mol). Finally, molecular dynamics of the peptide at 300K in the presence of Ca2+ were used to simulate the cation binding process. Starting points for these simulations were generated by placing the ion in the vicinity of two molecules of the peptide. The simulation results showed that the conformers with two consecutive beta-turns led to the formation of a stable 2:1 (peptide:Ca2+) sandwich complex in agreement with earlier experimental observations on similar linear peptides. While the starting conformation of the peptide in the consecutive beta-turn structure allowed for the proper orientation of three carbonyl oxygen atoms for chelation to the metal ion, the dynamics of complex formation rearranged the peptide structure substantially, leading to the formation of an 8-coordinated Ca2+ complex in a dodecahedral spatial arrangement. Thus, based on the energetics of the structures and processes involved, the present study demonstrates that: a) peptide-Ca2+ complex formation is initiated by conformers adopting consecutive beta-turn structures which subsequently go over to a significantly different conformation found in the complex; and, b) The facile interconversion between the low-energy conformers in the different groups would help shift the equilibrium population towards the consecutive beta-turn structure during the complex formation.  相似文献   

18.
Continuum solvation models that estimate free energies of solvation as a function of solvent accessible surface area are computationally simple enough to be useful for predicting protein conformation. The behavior of three such solvation models has been examined by applying them to the minimization of the conformational energy of bovine pancreatic trypsin inhibitor. The models differ only with regard to how the constants of proportionality between free energy and surface area were derived. Each model was derived by fitting to experimentally measured equilibrium solution properties. For two models, the solution property was free energy of hydration. For the third, the property was NMR coupling constants. The purpose of this study is to determine the effect of applying these solvation models to the nonequilibrium conformations of a protein arising in the course of global searches for conformational energy minima. Two approaches were used: (1) local energy minimization of an ensemble of conformations similar to the equilibrium conformation and (2) global search trajectories using Monte Carlo plus minimization starting from a single conformation similar to the equilibrium conformation. For the two models derived from free energy measurements, it was found that both the global searches and local minimizations yielded conformations more similar to the X-ray crystallographic structures than did searches or local minimizations carried out in the absence of a solvation component of the conformational energy. The model derived from NMR coupling constants behaved similarly to the other models in the context of a global search trajectory. For one of the models derived from measured free energies of hydration, it was found that minimization of an ensemble of near-equilibrium conformations yielded a new ensemble in which the conformation most similar to the X-ray determined structure PTI4 had the lowest total free energy. Despite the simplicity of the continuum solvation models, the final conformation generated in the trajectories for each of the models exhibited some of the characteristics that have been reported for conformations obtained from molecular dynamics simulations in the presence of a bath of explicit water molecules. They have smaller root mean square (rms) deviations from the experimentally determined conformation, fewer incorrect hydrogen bonds, and slightly larger radii of gyration than do conformations derived from search trajectories carried out in the absence of solvent.  相似文献   

19.
Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical structure and receptor docking mechanism are still not well understood. The conformational dynamics of this neuron peptide in liquid water are studied here by using all-atom molecular dynamics (MD) and implicit water Langevin dynamics (LD) simulations with AMBER potential functions and the three-site transferable intermolecular potential (TIP3P) model for water. To achieve the same simulation length in physical time, the full MD simulations require 200 times as much CPU time as the implicit water LD simulations. The solvent hydrophobicity and dielectric behavior are treated in the implicit solvent LD simulations by using a macroscopic solvation potential, a single dielectric constant, and atomic friction coefficients computed using the accessible surface area method with the TIP3P model water viscosity as determined here from MD simulations for pure TIP3P water. Both the local and the global dynamics obtained from the implicit solvent LD simulations agree very well with those from the explicit solvent MD simulations. The simulations provide insights into the conformational restrictions that are associated with the bioactivity of the opiate peptide dermorphin for the delta-receptor.  相似文献   

20.
A continuum electrostatics approach for molecular dynamics (MD) simulations of macromolecules is presented and analyzed for its performance on a peptide and a globular protein. The approach incorporates the screened Coulomb potential (SCP) continuum model of electrostatics, which was reported earlier. The model was validated in a broad set of tests some of which were based on Monte Carlo simulations that included single amino acids, peptides, and proteins. The implementation for large-scale MD simulations presented in this article is based on a pairwise potential that makes the electrostatic model suitable for fast analytical calculation of forces. To assess the suitability of the approach, a preliminary validation is conducted, which consists of (i) a 3-ns MD simulation of the immunoglobulin-binding domain of streptococcal protein G, a 56-residue globular protein and (ii) a 3-ns simulation of Dynorphin, a biological peptide of 17 amino acids. In both cases, the results are compared with those obtained from MD simulations using explicit water (EW) molecules in an all-atom representation. The initial structure of Dynorphin was assumed to be an alpha-helix between residues 1 and 9 as suggested from NMR measurements in micelles. The results obtained in the MD simulations show that the helical structure collapses early in the simulation, a behavior observed in the EW simulation and consistent with spectroscopic data that suggest that the peptide may adopt mainly an extended conformation in water. The dynamics of protein G calculated with the SCP implicit solvent model (SCP-ISM) reveals a stable structure that conserves all the elements of secondary structure throughout the entire simulation time. The average structures calculated from the trajectories with the implicit and explicit solvent models had a cRMSD of 1.1 A, whereas each average structure had a cRMSD of about 0.8A with respect to the X-ray structure. The main conformational differences of the average structures with respect to the crystal structure occur in the loop involving residues 8-14. Despite the overall similarity of the simulated dynamics with EW and SCP models, fluctuations of side-chains are larger when the implicit solvent is used, especially in solvent exposed side-chains. The MD simulation of Dynorphin was extended to 40 ns to study its behavior in an aqueous environment. This long simulation showed that the peptide has a tendency to form an alpha-helical structure in water, but the stabilization free energy is too weak, resulting in frequent interconversions between random and helical conformations during the simulation time. The results reported here suggest that the SCP implicit solvent model is adequate to describe electrostatic effects in MD simulation of both peptides and proteins using the same set of parameters. It is suggested that the present approach could form the basis for the development of a reliable and general continuum approach for use in molecular biology, and directions are outlined for attaining this long-term goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号