首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectoplasmic specializations (ES) facing spermatids were studied in species representative of four classes of non-mammalian vertebrates (Pisces--bluegill; Amphibia--bullfrog; Reptilia--red eared turtle; Aves--domestic chicken). ES was not seen in the bluegill but was present in all other species studied. In the frog, turtle, and chicken, ES did not resemble its mammalian counterpart and could only be characterized by the presence of 6 nm filaments (presumedly actin) within the somatic cell facing the head region of elongating spermatids. ES filaments were sparse in the frog and were sometimes associated with more deeply situated endoplasmic reticulum. Turtle ES filaments were abundant and encircled the acrosomal region of the spermatid head and were delimited by fenestrated saccules of endoplasmic reticulum. In the chicken, ES filaments were prominent but less abundant than in the turtle. Six nanometer filaments of the chicken ES appeared in a tangled mass and were not associated with clearly defined endoplasmic reticulum. In the three species where ES was found, it first developed as spermatids became entrenched within the surrounding somatic cell. Neither cell elongation, nuclear elongation, or movement of the nucleus to the cell surface was synchronized with the onset of ES development. That ES development was seen concomitant with spermatid entrenchment and spermatid orientation suggested a role for ES in these processes. This hypothesis was further strengthened by observations in the fish where ES was lacking and where spermatid entrenchment within the somatic cell, did not occur. The study also supported the hypothesis that ES acts as a cytoskeletal mantle to which other cytoskeletal elements within the cell interact to affect the position of elongate spermatids within the epithelium. The dissolution of ES prior to spermiation and concomitant loss of a close relationship between cells suggests that ES is also related to somatic cell-germ cell adhesion and therefore plays an important role in the spermiation process.  相似文献   

2.
The Sertoli cells of the Cape horseshoe bat (Rhinolophus capensis) and Schreiber's long-fingered bat (Miniopterus schreibersii) undergo marked changes in ultrastructure related to stages in the spermatogenic cycle. The amount of lipid stored in the Sertoli cells varies annually and is at a maximum from just after spermiation to early in the following spermatogenic cycle. During spermatogenesis, the diameter of the lipid droplets decreases, reaching a minimum prior to spermiation. Sertoli cells exhibit a marked apicobasal differentiation, particularly in the vicinity of developing late spermatids, where the cytoplasm of the Sertoli cell is packed with smooth endoplasmic reticulum. The possible roles of lipid droplets and smooth endoplasmic reticulum. The possible roles of lipid droplets and smooth endoplasmic reticulum in steroidogenesis by Sertoli cells are discussed. Junctional complexes occur between Sertoli cells and spermatogonia, are apparently absent from between Sertoli cells and spermatocytes, and are restricted to the region of the developing acrosome in the spermatids. Annulate lamellae, which occur commonly in the developing germinal cells and less frequently in the Sertoli cells, may be associated with the production of microtubules, which are present in both spermatids and Sertoli cells.  相似文献   

3.
Pig embryos aged 24 days were obtained from artifically inseminated sows for ultrastructural study of the indifferent gonads. Sex was identified by chromosome analysis. The gonads are composed in both sexes of three different tissues: the surface epithelium, the gonadal blastema and the mesenchyme. The surface epithelial cells contained elongate mitochondria, granular endoplasmic reticulum, free polysomes, the Golgi complex, fine filaments and coated vesicles. The primitive cords were continuous with the surface epithelium and the interior of the gonad was occupied by blastema cells. They had prominent nucleoli, elongate mitochondria, granular endoplasmic reticulum, the Golgi complex, free polysomes, some lipid droplets and occasionally circular smooth membrane profiles resembling the agranular endoplasmic reticulum. Individual primordial germ cells were seen in all parts of the gonad. They were roundish with prominent nucleoli, globular mitochondria, granular endoplasmic reticulum, free polysomes, the Golgi complex, coated vesicles, lipid droplets and dense bodies. Degenerating cells and cells having pseudopods were also encountered. In comparison to the gonad at the age of 22 days, the primordium had grown into a longitudinal roundish protrusion and the number of primoridal germ cells had increased. Histological and ultrastructural observations showed that the pig gonads at the age of 24 days were similar in both sexes.  相似文献   

4.
Insect galls may present nutritive tissues with distinct cytological features related to the order of the gall inducer. Galling Lepidoptera larvae chew plant cells and induce the redifferentiation of parenchymatic cells into nutritive ones. The nutritive cells in the galls induced by a microlepidoptera on the leaves of Tibouchina pulchra (Cham.) Cogn. (Melastomataceae) are organelle-rich, with developed Golgi apparatus, endoplasmic reticulum, ribosomes, polyribosomes, mitochondria, plastids, and one great central or several fragmented vacuoles. The nonobservance of the nuclei in the nutritive cells deserves special attention, and confers a similarity between the nutritive cells and the vascular conductive ones. The great amount of rough endoplasmic reticulum, ribosomes, polyribosomes, and mitochondria is indicative of the high metabolic status of these cells. They are vascular cambium-like, with high protein synthesis and lipid storage. The proteins are essential to enzymatic metabolism, and secondarily, to larvae nutrition, similarly to the lipid droplets which confer energetic profile to these nutritive cells. The living enucleated cells receive mRNA from their neighbor ones, which may support the high metabolic profile of endoplasmic reticulum and ribosomes observed in galls. Thus, the nutritive cells are stimulated by the galling larvae activity, generating a new cell type, whose redifferentiation includes a mix of intrinsic and common plant pathways.  相似文献   

5.
Testicular samples were collected to describe the ultrastructure of spermiogenisis in Alligator mississipiensis (American Alligator). Spermiogenesis commences with an acrosome vesicle forming from Golgi transport vesicles. An acrosome granule forms during vesicle contact with the nucleus, and remains posterior until mid to late elongation when it diffuses uniformly throughout the acrosomal lumen. The nucleus has uniform diffuse chromatin with small indices of heterochromatin, and the condensation of DNA is granular. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. Once the acrosome has completed its development, the nucleus of the early elongating spermatid becomes associated with the cell membrane flattening the acrosome vesicle on the apical surface of the nucleus, which aids in the migration of the acrosomal shoulders laterally. One endonuclear canal is present where the perforatorium resides. A prominent longitudinal manchette is associated with the nuclei of late elongating spermatids, and less numerous circular microtubules are observed close to the acrosome complex. The microtubule doublets of the midpiece axoneme are surrounded by a layer of dense staining granular material. The mitochondria of the midpiece abut the proximal centriole resulting in a very short neck region, and possess tubular cristae internally and concentric layers of cristae superficially. A fibrous sheath surrounds only the axoneme of the principal piece. Characters not previously described during spermiogenesis in any other amniote are observed and include (1) an endoplasmic reticulum cap during early acrosome development, (2) a concentric ring of endoplasmic reticulum around the nucleus of early to middle elongating spermatids, (3) a band of endoplasmic reticulum around the acrosome complex of late developing elongate spermatids, and (4) midpiece mitochondria that have both tubular and concentric layers of cristae. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The ultrastructure of follicle cells in the ovary at different developmental stages ofBranchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well developed Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secretory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous microfilaments which may play a role in ovulation.  相似文献   

7.

Background  

In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear.  相似文献   

8.
Observations on the fine structure of KMnO4-fixed testes of small mammals (guinea pig, rat, and mouse) reveal certain morphological differences between the spermatogenic and Sertoli cells which have not been demonstrated in the same tissue fixed with OsO4. Aggregates of minute circular profiles, much smaller than the spherical Golgi vesicles, are described in close association with the Golgi complex of developing spermatids. Groups of dense flattened vesicles, individually surrounded by a membrane of different dimensions than that which bounds most of the other cell organelles, appear dispersed within the cytoplasm of some spermatogenic cells. Flattened vesicles of greater density than those belonging to the Golgi complex are reported confined to the inner Golgi zone of developing guinea pig spermatids between the Golgi cisternae and the head cap. The profiles of endoplasmic reticulum within spermatocytes appear shorter, wider, and more tortuous than those of Sertoli cells. Minute cytoplasmic particles approximately 300 A in diameter and of high electron opacity appear randomly disposed in some Sertoli cells. Groups of irregular-shaped ovoid bodies within the developing spermatids are described as resembling portions of cytoplasm from closely adjacent spermatids. Interpretation is presented regarding the fine structure of KMnO4-fixed testes in view of what has already been reported for mammalian testes fixed in OsO4.  相似文献   

9.
Summary Changes in the endoplasmic reticulum of mouse spermatids during spermiogenesis were examined by scanning electron microscopy, applying the OsO4-DMSO-OsO4 method, which permits 3-dimensional observation of cell organelles. At the same time, the endoplasmic reticulum was stained selectively by the Ur-Pb-Cu method, and 0.5 m-thick sections were prepared for observation by transmission electron microscopy. The results demonstrated stereoscopically the mode of disappearance of the endoplasmic reticulum. In spermatids of the early maturation phase, the endoplasmic reticulum was of uniform diameter, branched and anastomosed, forming a complicated three-dimensional network throughout the cytoplasm. A two-dimensional net was also noted to have formed just beneath the plasma membrane and about Sertoli cell processes invaginating the spermatid cytoplasm. As spermiogenesis progressed, the spread-out endoplasmic reticulum gradually aggregated to form a condensed, glomerulus-like structure consisting of a very thin endoplasmic reticulum connected to the surrounding endoplasmic reticulum. This structure corresponds to the so-called radial body. Thus, the endoplasmic reticulum may aggregate, condense, be transformed into a radial body, and be removed from the cytoplasm. The two-dimensional endoplasmic reticulum-net, just beneath the plasma membrane and surrounding processes of Sertoli cells, disappeared in spaces where the three-dimensional endoplasmic reticulum network was scarce. Both the two-dimensional endoplasmic reticulum-net structure and the three-dimensional endoplasmic reticulum network disappeared at the same time, indicating that they may be closely related.  相似文献   

10.
Peculiar undulating cisternae of endoplasmic reticulum have been observed in the spermatids of the opisthobranch mollusc Spurilla neapolitana. Analysis of sections suggests that these arrays of ER might be a multilamellar structure consisting of paired cytomembranes molded into parallel, conical elevations with hexagonal bases. The structure is associated most frequently with the Golgi complex of the spermatid but its function is unknown. Other reports of similar arrays of ER in both plant and animal cells are discussed and compared with those of Spurilla spermatids.  相似文献   

11.
Early spermatids of the onychophoran Peripatopsis capensis are spherical cells with a centrally located nucleus, numerous mitochondria, Golgi complexes, microtubules and two centrioles. During spermiogenesis, Golgi vesicles migrate to one side of the cell where they form a tight aggregate, which is later shed. The mature spermatozoon has no acrosome. Several mitochondria fuse to form a middle piece containing three large mitochondria. Nucleus and middle-piece elongate, presumably under the influence of helically twisted microtubules. Outside this set of microtubules a continuous layer of endoplasmic reticulum cisternae is formed which separates the interior portion of the cell from an external cytoplasmic rim, which is later shed. Outside the 9 + 2 complex, the tail presents nine accessory microtubules, and a peripheral layer of microtubules beneath the plasma membrane. The enforcement of the tail structure may be related to the fertilization biology of this animal, which is by “hypodermal” impregnation.  相似文献   

12.
Summary ACPase and TPPase activity has been examined in the germinal epithelium of the testes in the domestic fowl. ACPase activity in spermatogonia and spermatocytes was confined to the Golgi complex. In spermatids ACPase activity was seen in the endoplasmic reticulum and nuclear envelope in the phase I and especially in the phase II (the elongating phase). This activity gradually decreased during the next phase III, and had disappeared in the final phase IV. The membrane body showed ACPase reaction in the small peripheral vacuoles and cisternal structures surrounding large central vacuoles. ACPase was also present in vesicles surrounding the developing tail. Late spermatids showed an abundance of autophagic vacuoles which had a complex array of ACPase positive delimiting membranes. In Sertoli cells ACPase activity was predominant in the lysosomes. TPPase activity was seen in the cisternae of the Golgi complex in spermatogonia and spermatocytes. In spermatids activity was present in the endoplasmic reticulum during the phase II, but it is lost in later stages. The smaller vacuoles and cisternal structures in the membrane body also showed reaction products. According to the present results it is thought likely that the smaller vacuoles and cisternal structures of the membrane body are of endoplasmic reticulum origin. The autophagic vacuoles in spermatids and the lysosomes of Sertoli cells are considered responsible for the degradation of residual bodies cast off by spermatids.  相似文献   

13.
The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.  相似文献   

14.
The ultrastructure of follicle cells in the ovary at different developmental stages of Branchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well de-veloped Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secre-tory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous micro-filaments which may play a role in ovulation.  相似文献   

15.
The ultrastructure of follicle cells in the ovary at different developmental stages ofBranchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well developed Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secretory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous microfilaments which may play a role in ovulation.  相似文献   

16.
The aim of this study was to analyse spermatogenesis in the African butterflyfish, Pantodon buchholzi, using transmission electron microscopy and scanning electron microscopy. P. buchholzi is the most basal teleost that exhibits insemination and produces a highly complex introsperm with the most elongate midpiece known in teleost fishes. Their early stages (spermatogonia and spermatocytes) do not differ greatly from those of other fishes, with the exception of Golgi apparatus degradation appearing as spindle-shaped bodies (SSBs). In round, early spermatids, the development of the flagellum begins after the migration of the centriolar complex towards the nucleus. Later, the elongation of the midpiece coincides with the displacement of the mitochondria and their fusion to produce nine mitochondrial derivatives (MDs). In these spermatids, the nucleus is situated laterally to the midpiece, with condensing chromatin in the centre of the nucleus. Within the midpiece, the flagellum is located within a cytoplasmic canal and is surrounded by a cytoplasmic sleeve containing fibres, MDs and a great amount of cytoplasm located on one side. During the next phase, nuclear rotation, the highly condensed chromatin is displaced to a position above the centriolar apparatus, whereas chromatin-free nucleoplasm is transferred to the cytoplasm. Later, this nucleoplasm, still surrounded by the nuclear membrane, is eliminated into the cyst lumen as the nucleoplasmic packet. Within the highly elongate spermatids, other excess organelles (SSBs, endoplasmic reticulum and mitochondria) are eliminated as residual bodies (RBs). Fully developed spermatozoa, which contain conical-shaped nuclei, eventually coalesce to form unencapsulated sperm packets (spermatozeugmata) that are surrounded by RBs at the level of the extremely elongate midpieces. Later, RBs are removed at the periphery of the cyst by means of phagocytosis by Sertoli cells.  相似文献   

17.
On the nurse cell and the spermatozeugma in Littorina sitkana   总被引:3,自引:0,他引:3  
Summary Nurse cells develop from diploid cells in the testis. Each cell undergoes a reduction division which leaves the nucleus with half the volume of a normal diploid cell. They send out pseudopodia which form desmosomelike junctions with developing spermatids. The nurse cells detach from the testicular wall, their nuclei degenerate and secretion droplets form in the cytoplasm. The pseudopodia are drawn in as the cytoplasmic secretions swell and the nurse cell becomes spherical. The eupyrene sperm become grouped unilaterally and at this stage are attached to the nurse cell by only the tips of their acrosomes. At maturity the nurse cells with their clumps of attached eupyrene sperm (spermatozeugmata) are released from the testis via ducts into the seminal vesicles, where they are stored prior to copulation. Nurse cells serve similar functions to those of apyrene sperm which are common among the Molluscs. We believe that the nurse cell and apyrene sperm are homologous.  相似文献   

18.
E A Ling  M M Ahmed 《Tissue & cell》1974,6(2):361-370
The corpus callosum of adult slow loris consists of a mixed population of several cell types, i.e. free subependymal cells, oligodendrocytes, astrocytes and microglia. The free subependymal cell is rather small and slender with a somewhat patchy nucleus. It shows scanty cytoplasm with free ribosomes. Oligodendrocytes vary both in nuclear and cytoplasmic densities and can be divided into three classes: light, medium dense and dark types. Their cytoplasm contains microtubules, rough endoplasmic reticulum and Golgi saccules. Astrocytes are pale cells with large amount of filaments in their cytoplasm. Microglia are small cells with granulated nuclei. The cells often show large cytoplasmic protrusions containing the usual cell organelles and lipofuscin bodies in their cytoplasm. Lastly, cells with typical features of neurons are occasionally encountered among the white matter.  相似文献   

19.
Cytodifferentiation during spermiogenesis in Lumbricus terrestris   总被引:6,自引:4,他引:2       下载免费PDF全文
The structural changes during spermiogenesis were studied on developing spermatids in seminal vesicles and receptacles of Lumbricus terrestris fixed in glutaraldehyde-osmium tetroxide and embedded in Epon-Araldite. The centriole plays a prominent role in the morphogenesis and organization of the microtubules of the manchette and flagellum. Microtubules arising from the centriole extend anteriorly to encase the developing middle piece, the nucleus, and the acrosome. The manchette not only provides a supporting framework for the cell during elongation, but also may provide the motive force for the elimination of both nucleoplasm and cytoplasm. The manchette participates in segregation and elimination of the nuclear vesicle that contains the nonchromatin nucleoplasm. Compartmentalization and conservation may also be a function of the manchette since those elements which remain within the framework of microtubules are retained, while all the cytoplasm outside the manchette is discarded. At maturation, the endoplasmic reticulum plays a key role in dismantling the manchette and reducing the cytoplasm external to it. During the early stages of middle-piece formation, six ovoid mitochondria aggregate at the posterior pole of the spermatid nucleus. Concurrent with manchette formation, the mitochondria are compressed laterally into elongate wedge-shaped components, and their outer limiting membranes fuse to form an hexagonal framework that surrounds the dense intramitochondrial matrices. Dense glycogen granules are arranged linearly between the peripheral flagellar tubules and the outer membrane of the mature sperm tail.  相似文献   

20.
The Sertoli cells of pig fetuses from 35 days postcoitum until 1 mo after birth have been investigated by light and electron microscopy in decapitated animals and their control littermates, as well as in untreated animals. Until 52 days postcoitum, Sertoli cells change in form during the formation of sex cords but from then onwards they are rather uniform. They primarily display an elongated nonindented nucleus with one or more prominent nucleoli, a well-developed Golgi apparatus, and in the basal compartment below or beside the nucleus, a large lipid droplet. There are large quantities of rough endoplasmic reticulum (RER) from 52 days postcoitum onwards, often with complex whirl forms and a parallel arrangement of profiles with relatively few ribosomes. After birth their numbers seem to be somewhat less, and by 1 mo after birth the RER profiles are often shorter and almost free of ribosomes. Clustered ribosomes are found in large quantities throughout the period under investigation. Especially in the early fetal period, the endoplasmic reticulum (ER) profiles show prominently filled cisternae. Mitochondria are mostly long and slender, or small and ovoid. Most have lamellar cristae, but mixed lamellar-tubular cristae can also be seen. Between decapitated, control and untreated animals no obvious ultrastructural differences could be observed. The peritubular cell sheath surrounding the sex cords did not show signs of differentiation into a layer of myoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号