首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Straight chain fatty acid α-oxidation increases during differentiation of 3T3-L1 adipocytes, leading to a marked accumulation of odd chain length fatty acyl moieties. Potential roles of this pathway in adipocyte differentiation and lipogenesis are unknown. Mammalian fatty acid 2-hydroxylase (FA2H) was recently identified and suggested to catalyze the initial step of straight chain fatty acid α-oxidation. Accordingly, we examined whether FA2H modulates adipocyte differentiation and lipogenesis in mature adipocytes. FA2H level markedly increases during differentiation of 3T3-L1 adipocytes, and small interfering RNAs against FA2H inhibit the differentiation process. In mature adipocytes, depletion of FA2H inhibits basal and insulin-stimulated glucose uptake and lipogenesis, which are partially rescued by the enzymatic product of FA2H, 2-hydroxy palmitic acid. Expression of fatty-acid synthase and SCD1 was decreased in FA2H-depleted cells, and levels of GLUT4 and insulin receptor proteins were reduced. 2-Hydroxy fatty acids are enriched in cellular sphingolipids, which are components of membrane rafts. Accelerated diffusional mobility of raft-associated lipids was shown to enhance degradation of GLUT4 and insulin receptor in adipocytes. Consistent with this, depletion of FA2H appeared to increase raft lipid mobility as it significantly accelerated the rates of fluorescence recovery after photobleaching measurements of lipid rafts labeled with Alexa 488-conjugated cholera toxin subunit B. Moreover, the enhanced recovery rates were partially reversed by treatment with 2-hydroxy palmitic acid. In conclusion, our findings document the novel role of FA2H in adipocyte lipogenesis possibly by modulation of raft fluidity and level of GLUT4.  相似文献   

2.
Lysophosphatidic acid (LPA) is a lipid mediator that may play an important role in growth and survival of carcinomas. In this study, LPA production and response were characterized in two human prostate cancer (CaP) cell lines: PC-3 and Du145. Bombesin, a neuroendocrine peptide that is mitogenic for CaP cells, stimulated focal adhesion kinase phosphorylation and activated the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Similar responses were elicited by 18:1 LPA (oleoyl-LPA). Studies using radioisotopic labeling revealed that both PC-3 and Du145 generate LPA and that LPA production is increased by bombesin. The kinetics of bombesin-induced phospholipase D activation and LPA production were similar. Using electrospray ionization mass spectrometry, 18:1 LPA was found to be an abundant LPA species in CaP cell medium. Structure activity studies of acyl-LPAs revealed that 18:1 LPA is most efficacious for activation of extracellular signal-regulated kinase and phospholipase D in CaP cells. Incubation with 18:1 LPA caused homologous desensitization of LPA response, whereas bombesin caused heterologous desensitization. LPA was present at nanomolar levels in medium from bombesin-treated cells. LPA extracted from the medium induced calcium mobilization in CaP cells. These results demonstrate that bioactive LPA is generated by CaP cells in response to a mitogen and suggest that 18:1 LPA can act as an autocrine mediator.  相似文献   

3.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

4.
Differentiating 3T3-L1 cells have been used to investigate the process of fatty acid uptake, its cellular specificity, and the involvement of cytoplasmic carrier proteins. The profile of fatty acid uptake in both differentiated and undifferentiated cells was biphasic, consisting of an initial rapid phase (0-20 s) followed by a second slower phase (60-480 s). In both cell types the initial phase of fatty acid (FA) uptake was temperature-insensitive whereas the rate of uptake during the second phase decreased 4-fold when measurements were made at 4 degrees C. The rate of [9,10-3H]oleate uptake in 3T3-L1 adipocytes was 10-fold greater than in the fibroblastic precursor cells. The acquisition of a differentially expressed cytoplasmic fatty acid binding protein (adipocyte lipid binding protein (ALBP] occurs coincident with the increased ability of these cells to take up FAs. Uptake experiments with 3-[125I]iodo-4-azido-N-hexadecylsalicylamide demonstrated that this photoactivatable FA analogue accumulated intracellularly in a time-, temperature-, and cell-specific fashion. Moreover, when 3T3-L1 adipocytes were presented with 3-[125I]iodo-4-azido-N-hexadecylsalicylamide and then irradiated, a single cytoplasmic 15-kDa protein was labeled. The in situ-labeled 15-kDa protein was identified as ALBP by its ability to be immunoprecipitated with anti-ALBP antisera. Taken together these results indicate that fatty acids traverse the plasma membrane and are bound by ALBP in the cytoplasmic compartment. It is likely that lipid uptake in other cell systems, such as liver, heart, intestine, and nerve tissue, proceeds by a similar process and that this represents a general mechanism for cell-specific FA uptake and utilization.  相似文献   

5.
During bone loss, osteoblast population can be replaced by adipose tissue. This apparent reciprocal relationship between decreased bone density and increased fat formation can be explained by an imbalance in the production of bone-forming and fat-forming cells in the marrow cavity. Thus, osteoblast and adipocyte pathways seem more closely and inversely related. In the present study, we investigated the effects of dexamethasone (dex) and calcitriol [1,25(OH)(2)D(3)] on proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures. Stromal cells were grown in primoculture in presence of dex and subcultivated in presence of dex and/or 1,25(OH)(2)D(3). Total cell proliferation, osteoblast and adipocyte-cells number, and -mRNA specific markers were used to study the effects of hormonal treatment on stromal cells. Total cell proliferation was stimulated by dex and inhibited by 1,25(OH)(2)D(3). Dex increased osteoblast and adipocyte cell population whereas calcitriol decreased bone-forming cell number and increased fat cell population. The presence of both hormones led to a strong decrease in osteoblastic cells and to a strong increase in adipocytic cell number. Dex induced mRNA osteoblastic markers expression like bone sialoprotein (BSP) and osteocalcin (OC) and an adipocyte marker expression, the fatty acid binding protein aP2. Calcitriol decreased the dex-induced BSP expression but stimulated slightly OC and aP2 mRNA. The effects of both hormones was to increase strongly OC and aP2 mRNA. These results support that, in rat bone marrow, adipocyte proliferation and differentiation are stimulated by glucocorticoids and calcitriol which act synergically, whereas osteoblastic cell proliferation and differentiation are increased by dex and inhibited by 1,25(OH)(2)D(3).  相似文献   

6.
Abstract. A31T6 proadipocytes, derived from BALB/C-3T3 clone A31, develop responsiveness to differentiation-promoting agents at density-arrest and differentiate into adipocytes, as determined by the accumulation of cytoplasmic lipid droplets. A flow cytometric assay is being employed to monitor the acquisition of aspects of the differentiated phenotype. In this study, the assay is used to monitor both the rate of differentiation, as defined by the appearance of cells containing lipid droplets and the rate of adipocyte maturation, which involves measurement of increases in cytoplasmic lipid in cells already committed to the differentiation programme. Specifically, we show that 1 treatment with a combination of indomethacin and dexamethasone causes the maximum percentage differentiation in the population, 2 addition of indomethacin in combination with either dexamethasone or insulin increases the rate of differentiation, and 3 indomethacin selectively increases the maturation of adipocytes, measured as an increase in the amount of lipid per cell. The cytometric assay used in these experiments has allowed determination of the effects of indomethacin on aspects of the adipocyte phenotype that cannot be measured by standard techniques.  相似文献   

7.
Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.  相似文献   

8.
Phosphorylation of the lipid droplet-associated protein perilipin A (Peri A) mediates the actions of cyclic AMP-dependent protein kinase A (PKA) to stimulate triglyceride hydrolysis (lipolysis) in adipocytes. Studies addressing how Peri A PKA sites regulate adipocyte lipolysis have relied on non-adipocyte cell models, which express neither adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triglyceride catabolism in mice, nor the "downstream" lipase, hormone-sensitive lipase (HSL). ATGL and HSL are robustly expressed by adipocytes that we generated from murine embryonic fibroblasts of perilipin knock-out mice. Adenoviral expression of Peri A PKA site mutants in these cells reveals that mutation of serine 517 alone is sufficient to abrogate 95% of PKA (forskolin)-stimulated fatty acid (FA) and glycerol release. Moreover, a "phosphomimetic" (aspartic acid) substitution at serine 517 enhances PKA-stimulated FA release over levels obtained with wild type Peri A. Studies with ATGL-and HSL-directed small hairpin RNAs demonstrate that 1) ATGL activity is required for all PKA-stimulated FA and glycerol release in murine embryonic fibroblast adipocytes and 2) all PKA-stimulated FA release in the absence of HSL activity requires serine 517 phosphorylation. These results provide the first demonstration that Peri A regulates ATGL-dependent lipolysis and identify serine 517 as the Peri A PKA site essential for this regulation. The contributions of other PKA sites to PKA-stimulated lipolysis are manifested only in the presence of phosphorylated or phosphomimetic serine 517. Thus, serine 517 is a novel "master regulator" of PKA-stimulated adipocyte lipolysis.  相似文献   

9.
Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the “biosynthesis of unsaturated fatty acids” pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment.  相似文献   

10.
ESR spectra were recorded from rat epididymal adipocyte ghosts labeled with the 5-nitroxide stearic acid spin probe, I(12,3). Polarity-corrected and approximate order parameters, that are sensitive to the flexibility of the incorporated label, were used to evaluate the membrane lipid fluidity. Addition of CaCl2 a 37 degrees C decreased the fluidity, as indicated by positive increases in the order parameters. The ordering effect of Ca2+ was concentration-dependent, reached saturation at approx. 3--4 mM, and was completely reversed by excess EGTA. Previous studies indicated that low- and high-affinity sites on adipocyte plasma membranes are able to bind 45Ca2+, and our results suggest that Ca2+-induced alterations in the lipid fluidity involve cation binding to low-affinity sites. The cellular movements of Ca2+ and, in particular, the binding of Ca2+ to the plasma membrane may play important roles in insulin's action on fat cell function. The possibility that insulin directly alters the membrane fluidity was tested by adding hormone to freshly-prepared I(12,3)-labeled adipocyte ghosts. Insulin, at concentrations (10(-6) M) that enhance glucose uptake into intact adipocytes, did not affect the fluidity of ghosts suspended in buffers with or without Ca2+. The fluidities of I(12,3)-labeled rat adipocyte ghosts or human erythrocyte ghosts were also unaffected by various forms of human growth hormone.  相似文献   

11.
The stroma-vascular fraction (SVF) of human adipose tissue has recently been described to be composed of endothelial cells identified as CD34+/CD31+ cells, infiltrated/resident macrophages defined as CD14+/CD31+ cells, and a new cell population characterized as CD34+/CD31- cells. To elucidate the cell identity of the adipocyte precursor cells, fluorescent activating cell sorter (FACS) analyses were performed on crude SVF cultured under adipogenic conditions, i.e., serum-deprived medium containing insulin, cortisol, triiodothyronine, and supplemented with a PPARgamma agonist for the first 3 days. The progressive accumulation of lipid droplets was associated with a selective enrichment of the CD34+/CD31- cell population whereas control experiments performed in medium supplemented with 10% serum showed an overall downregulation of the three cell markers without adipogenesis. Among the different cell subsets, the CD34+/CD31- subset was the unique cell fraction able to answer to adipogenic culture conditions. Indeed, a time-dependent expression of adipocyte markers as well as acquisition of adipocyte-typical metabolic activities were observed. In parallel, the gene expression of lipogenic and lipolytic enzymes increased. The ability to differentiate into adipocytes was restricted to cells that did not express the mesenchymal stem cell marker CD105. Furthermore, the CD34+/CD31- cells did not respond to culture conditions used for hematopoietic colony assays. Taken together, the present study demonstrates that adipocyte progenitor cells, i.e., the preadipocytes, are included in the CD34+/CD31- cell fraction, which displays distinct features from the adult mesenchymal and hematopoietic stem cells.  相似文献   

12.
Precursor cells to adipocytes were purified from the epididymal fat pads of small rats and studied in primary culture. A culture system in which substrate and cofactors were not rate-limiting for complete adipocyte conversion was used by utilizing an agarose feeding-layer. Detachment of cells from the culture dish was prevented by addition of a viscous layer of culture medium, containing methyl cellulose. This system allowed quantitation and definite characterization of formed adipocytes, defined as cells accumulating a lipid droplet >20 micro m in diameter. The cells could be subcultured but then gradually lost their adipocyte conversion ability. Age of the donor depressed the adipocyte conversion which, however, never seemed to stop completely. Prostaglandin E(1) and F(2alpha) had no definite effect in the physiological concentration range while indomethachin possibly had a weak inhibitory effect. Insulin, heparin, and isobutylmethylxanthine increased adipocyte formation. Development of characteristic adipocyte functions with time was examined. Lipoprotein lipase activity was very low in the isolated precursor cells before culture, but developed in culture at confluence and was a thousand-fold higher within a few days. At this peak lipoprotein lipase activity was 50-fold higher than in mature adipocytes from the same donor animal. Triglyceride synthesis from glucose peaked in parallel but never reached the value of mature adipocytes and very little fatty acid was synthesized. Hormone-sensitive glycerol release developed at confluence and reached the level of activity of mature adipocytes. This study and previous work have indicated a role for the cyclase system in the development of adipocytes from precursor cells. Dibutyrylcyclic AMP caused an enhancement of lipoprotein lipase activity and adipocyte conversion. In suspension media, the nucleotide caused inhibition. These results are compatible with an effect of the nucleotide, not directly on lipoprotein lipase and cell determination, but via events taking place at confluence associated with cell to cell interactions. In comparison with previously described cells from an established cell line which undergo adipose conversion (3T3 cells), the cells described in the present work, like adipocytes, showed more metabolic activity in pathways for fatty acid incorporation from exogenous lipid sources (lipoprotein lipase activity) than from de novo synthesis. Furthermore, host-factors could be followed such as in the age- and site-dependence of adipocyte formation. Physiological stimuli such as insulin, lipid substrate, and heparin had effects on adipocyte formation. It was therefore concluded that this cell preparation has a potential of yielding information of physiological significance in studies of the regulation of adipocyte multiplication.-Bj?rntorp, P., M. Karlsson, P. Pettersson, and G. Sypniewska. Differentiation and function of rat adipocyte precursor cells in primary culture.  相似文献   

13.
14.
Treatment of isolated rat adipocytes with tumor-promoting phorbol esters, caused a fivefold stimulation of glucose oxidation, determined as 14CO2 production from [1-14C]glucose and a fivefold increase in the rate of lipid synthesis from [14C]glucose. Treatment of the cells with 12-O-tetradecanoylphorbol 13-acetate increased the rate of 86Rb+ uptake into the cells. Also phospholipase C was able to stimulate the rate of glucose oxidation; phospholipase C and 12-O-tetradecanoylphorbol 13-acetate stimulated glucose oxidation in a non-synergistic fashion, indicating a common mechanism for their action. Active phorbol esters and, in part, also phospholipase C, caused a translocation of protein kinase C activity from the soluble to the particulate fraction of the adipocytes. This process was rapid, being complete 30 s after the addition of phorbol ester, and resulted in the appearance of the kinase mainly in the mitochondrial and plasma membrane fractions. A comparison between the binding characteristics of adipocyte protein kinase C and the metabolic effects of the phorbol esters on the adipocytes revealed that the dose-response relationship did not correlate with binding of the phorbol esters, but, rather, a correlation was observed between the dose of phorbol esters required for translocation of protein kinase C and the intracellular effects. The results indicate that the intracellular translocation of protein kinase C might be a trigger for the effects of phorbol esters on the adipocyte and that binding of the esters to protein kinase C is not a sufficient event to cause this effect. Furthermore, it is suggested that activation of protein kinase C might be partly the action of hormones, such as insulin, on the fat cells.  相似文献   

15.
We have investigated the targeting of caveolin to lipid bodies in adipocytes that express high levels of caveolins and contain well-developed lipid droplets. We observed that the lipid droplets isolated from adipocytes of caveolin-1 knock out mice contained dramatically reduced levels of cholesterol, indicating that caveolin is required for maintaining the cholesterol content of this organelle. Analysis of caveolin distribution by cell fractionation and fluorescent light microscopy in 3T3-L1 adipocytes indicated that addition of cholesterol rapidly stimulated translocation of caveolin to lipid droplets. The cholesterol-induced trafficking of caveolins to lipid droplets was shown to be dynamin- and protein kinase C (PKC)-dependent and modulated by src tyrosine kinase activation, suggesting a role for caveolar endocytosis in this novel trafficking pathway. Consistent with this, caveolae budding was stimulated by cholesterol addition. The present data identify lipid droplets as potential target organelles for caveolar endocytosis and demonstrate a role for caveolin-1 in the maintenance of free cholesterol levels in adipocyte lipid droplets.  相似文献   

16.
Fatty acid (FA) and glucose transport into insulin-dependent cells are impaired in insulin resistance (IR; type 2 diabetes mellitus). Studies done on the effects of FAs on glucose uptake, and the influence of insulin on FA uptake by adipocytes, have yielded contradictory results. In this study, isolated human adipocytes were exposed to arachidonic acid (AA) and to insulin, and FA uptake as well as glucose uptake was measured. AA uptake into adipocyte membranes and nuclei was also investigated. Glucose uptake was inhibited by 57 +/- 8% after 30 min of exposure to arachidonate. AA was significantly taken up into adipocyte membranes (49.6 +/- 29% and 123 +/- 74%) at 20 and 30 min of exposure, respectively, and into nuclei (147.6 +/- 19.2%) after 30 min. Insulin stimulated AA uptake (24.1 +/- 14.1%) at 30 min by adipocytes from a non-obese subject, while inhibiting it (16.6 +/- 12%) in adipocytes from an obese subject. These results suggest that: (1) AA inhibits glucose uptake by adipocytes exposed over a short period, probably by a membrane-associated mechanism, (2) insulin-dependent AA uptake is dependent on the body mass index (BMI) of the donor and the insulin sensitivity of their adipocytes.  相似文献   

17.
Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.  相似文献   

18.
19.
《Phytomedicine》2014,21(12):1733-1741
Oroxylin A (OA) is a flavonoid found in Oroxylum indicum, a medicinal plant with multiple biological activities. This study was taken up to investigate the effect of OA, on adipogenesis, lipolysis and apoptosis in 3T3 L1 cells. Pre-adipocytes were treated with 10–40 μM OA on various days of adipogenesis treatment schedule. Mature adipocytes were treated with OA for lipolysis and apoptosis studies. In maturing pre-adipocytes, 10 μM OA suppressed intracellular lipid accumulation by 42.19% which was confirmed by lipidTox imaging of cells. In addition, OA decreased the nuclear translocation of PPARγ and mRNA expression of its downstream genes (FAS and LPL) along with adiponectin secretion. In mature adipocytes, 40 μM of OA decreased cell viability by 30% of control. Annexin V/PI staining showed induction of apoptosis which was further confirmed by enhanced levels of pro-apoptotic proteins Bax, cyt c, AIF and chromatin condensation. OA enhanced TNF-α secretion, lipolysis and decreased Akt phosphorylation in mature adipocytes. Findings suggest that OA possibly exerts its anti-obesity effect by affecting adipocyte life cycle at critical points of differentiation and maturity. When we compared the potency of OA with non-methoxylated flavonoids morin, naringenin and kaempferol on adipocyte life cycle OA was far more potent. Thus, study clearly indicates a new role for oroxylin A as regulator of adipocyte life cycle. In addition, study also suggested a specific role of methoxylated group in exerting lipolysis and cytotoxic effects in mature adipocytes.  相似文献   

20.
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号