首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A photoinduced hydrogen production system, coupling sucrose degradation with invertase and glucose dehydrogenase (GDH) and hydrogen production with colloidal platinum as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a), has been developed. Continuous hydrogen gas production was observed when the reaction mixture containing sucrose, invertase, GDH, nicotinamide adenine dinucleotide (NAD(+)), Mg Chl-a, methyl viologen (MV(2+), an electron relay reagent), and colloidal platinum was irradiated by visible light.  相似文献   

2.
A biohydrogen production system coupling the polysaccharide such as sucrose and maltose degradation with invertase and glucose dehydrognase (GDH) and hydrogen production with colloidal platinum as hydrogen-evolved catalyst using the visible light-induced photosensitization of water-soluble zinc porphyrin, zinc tetraphenylporphyrin tetrasulfonate (ZnTPPS) has been investigated. Continuous hydrogen gas production was observed when the sample solution containing polysaccharide, invertase, GDH, nicotinamide adenine dinucreotide (NAD(+)), ZnTPPS, methylviologen (an electron relay reagent), and colloidal platinum was irradiated by visible light. After 240-min irradiation, the amount of hydrogen production in the system using sucrose and maltose was estimated to be 3.1 and 0.35 micromol, respectively.  相似文献   

3.
A photoinduced H2 production system, coupling d-maltose degradation by glucoamylase and glucose dehydrogenase (GDH) and H2 production with colloidal platinum as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a), has been developed. H2 production was continuous when the reaction mixture containing d-maltose, glucoamylase, GDH, NAD+, Mg Chl-a, Methyl Viologen (MV2+, an electron relay reagent) and colloidal platinum was irradiated by visible light. The amount of H2 production was estimated to be 5 ± 0.5 mol after 4 h irradiation. The yield of the conversion of d-maltose to H2 in this system was ca. 1.8 %.  相似文献   

4.
A photoinduced-H2 production system, coupling cellulose degradation by cellulase and glucose dehydrogenase (GDH) and H2 production with colloidal Pt as a catalyst using the visible light-induced photosensitization of Mg chlorophyll a, has been developed. When the sample solution containing methylcellulose, cellulase, GDH, NAD+, Mg chlorophyll a, Methyl viologen and colloidal Pt was irradiated, continuous H2 production was observed. The amount of H2 production was about 12 mol after 4 h irradiation.  相似文献   

5.
Photoinduced hydrogen production with Mg chlorophyll-a from spirulina as a visible light photosensitizer by use of three component system consisting of nicotineamide adenine dinucleotide phosphate, reduced form (NADPH) as an electron donor, methylviologen as electron relay reagent and colloidal platinum as hydrogen evolution catalyst was investigated. By the addition of NADPH, the photostability of Mg chlorophyll-a was increased. The effective visible-light induced hydrogen production system with colloidal platinum was established using Mg chlorophyll-a.  相似文献   

6.
Photoinduced hydrogen production with Mg chlorophyll-a from Spirulina as a visible and near-IR light photosensitizer by use of three component system consisting of nicotineamide adenine dinucleotide phosphate, reduced form (NADPH) as an electron donor, methylviologen as electron relay reagent and colloidal platinum as hydrogen production catalyst was investigated. After 4 h irradiation, the amount of hydrogen production with Mg chlorophyll-a and MgTPP, which was artificial model compound for chlorophyll, were c.a. 2.7 and 1.8 mol, respectively. When the near-IR light was irradiated, little change of hydrogen production was observed. Thus, the effective visible and near IR light induced hydrogen production system with colloidal platinum was established using Mg chlorophyll-a.  相似文献   

7.
A novel phosphate solubilizing bacterium (PSB) was isolated from the rhizosphere of sugarcane and is capable of utilizing sucrose and rock phosphate as the sole carbon and phosphate source, respectively. This PSB exhibited mineral phosphate solubilizing (MPS) phenotype on sugars such as sucrose and fructose, which are not substrates for enzyme glucose dehydrogenase (GDH), along with GDH substrates, viz., glucose, xylose, and maltose, as carbon sources. PCR amplification of the rRNA gene and sequence analysis identified this bacterium as Citrobacter sp. DHRSS. On sucrose and fructose Citrobacter sp. DHRSS liberated 170 and 100 μM free phosphate from rock phosphate and secreted 49 mM (2.94 g/L) and 35 mM (2.1 g/L) acetic acid, respectively. Growth of Citrobacter sp. DHRSS on sucrose is mediated by an intracellular inducible neutral invertase. Interestingly, in the presence of GDH substrates like glucose and maltose, Citrobacter sp. DHRSS produced approximately 20 mM (4.36 g/L) gluconic acid and phosphate released was 520 and 570 μM, respectively. Citrobacter sp. DHRSS GDH activity was found when grown on GDH and non-GDH substrates, indicating that it is constitutive and could act on a wide range of aldose sugars. This study demonstrates the role of different organic acids in mineral phosphate solubilization by rhizobacteria depending on the nature of the available carbon source.  相似文献   

8.
Three year data on the effect of water- and mannitol (4%) priming of chickpea seeds (12 h at 25°C) showed higher number and biomass of nodules in the plants from primed seeds than from non-primed seeds. The biomass of nodules increased to 75 DAS but decreased by 90 DAS. Activities of sucrose metabolism enzymes (sucrose synthase (SS) and alkaline invertase) and of nitrogen metabolism (glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH)) in nodules of primed and non-primed crops during development are reported. SS and alkaline invertase activities increased to 70 DAS and then decreased. In primed plants, the higher SS activity in nodules at 60 and 70 DAS might be responsible for providing more energy and carbon skeleton for nitrogen fixation and for ammonium assimilation in primed plants. At 85 DAS, though the SS activity decreased in comparison with the earlier growth stages, it was still higher in nodules of the primed crops than the non-primed crop. Activity of alkaline invertase was maximum at 70 DAS in the nodules of primed and non-primed crops. Priming increased nodule GS activity at 70 and 85 DAS. GOGAT activity was unaffected by priming but GDH activity was greater in nodules from primed crops at 50 DAS. Elevated SS and GS nodule activities in primed chickpeas might be responsible in increasing nodule biomass and metabolic activity thereby increasing seed fill.  相似文献   

9.
Glutamine synthetase (GS) level is positively influenced by exogenously supplied sucrose in isolated pea roots (similarly as nitrate reductase - NR), glutamate dehydrogenase (GDH) level negatively. Comparison with previous results shows that GS level decreases more slowly than NR level when sucrose is omitted from the medium; the rate of changes in GS level corresponds rather to that in GDH level. The increase in GDH level in the tips of isolated roots cultivated in the medium lacking sucrose stops after approx. 24 h, but continues for at least 72 h in more mature root parts. GS level decreases during the first 24 h in the tips of isolated roots (compared with roots of intact seedlings) cultivated both with sucrose and without it (without sucrose more), however it again rises in the course of further cultivation with sucrose. The differences in GS and GDH levels caused by omission of sucrose are small in isolated roots from which root tips were removed, the difference in NR level in decapitated roots is similar to that found in isolated roots with root tips left. Decapitated isolated roots cultivated without sucrose contain higher amounts of soluble sugars than corresponding roots with root tips left. These facts are dismissed with regard to sugar consumption, transport, and compartmentalisation, and with respect to production in root tips and other plant parts of unknown compounds involved in GS and GDH regulation. The results obtained suggest that GDH functions in pea roots in the deaminating direction.  相似文献   

10.
Aspergillus nidulans produces an extracellular beta-D-fructofuranoside fructohydrolase (invertase) when grown on a medium containing the beta-fructofuranosides sucrose or raffinose, indicating that synthesis is subject to induction by the substrate. On a growth medium containing sucrose, production was maximal at 15 h in cultures incubated at 28 C degrees. After this time the level of detectable invertase in the cultures declined. A proportion of the enzyme was secreted during the linear growth phase of the fungus. Various sugars were investigated for induction of invertase, but only the two beta-fructofuranosides induced high production levels; with the other sugars, the enzyme was produced only at a low constitutive level. Mycelium grown under repressive conditions (1% glucose), rapidly produced invertase when transferred to sucrose-containing medium. After 80 min the invertase level in these cultures was 26-fold higher than the constitutive level. The repressive effect of other sugars, e.g. glucose and xylose, on invertase production was also demonstrated in this experimental system.  相似文献   

11.
Effect on lysosomes of invertase endocytosed by rat-liver   总被引:1,自引:0,他引:1  
The intracellular localization of invertase endocytosed by rat liver was investigated by analytical centrifugation in sucrose and Percoll gradients of mitochondrial fractions originating from rats killed 15 h after injection. After isopycnic centrifugation in a sucrose gradient, invertase is located in higher density zones than acid hydrolases. The difference between the distribution of invertase and that of acid hydrolases increases with the amount of invertase injected. When the invertase dose is sufficiently high, a change of lysosomal enzyme distribution is clearly visible. It consists in the shift of a proportion of these enzymes to higher density regions where invertase is located. The proportion of hydrolase activity affected by invertase is different for each enzyme measured; it is the least pronounced for acid phosphatase, and most for acid deoxyribonuclease and arylsulfatase. A pretreatment of the rat with Triton WR 1339 considerably decreases the equilibrium density of structures bearing invertase. Nevertheless invertase distribution is quite distinct from that of the bulk of lysosomal enzymes that are recovered in lower density zones of the gradient; on the other hand the invertase injection to rats treated with Triton WR 1339 causes a spreading of the acid hydrolase distribution towards higher density zones. The distribution of acid hydrolases and invertase in a Percoll gradient depends on the sucrose concentration of the solvent. It is shifted towards higher densities when the sucrose concentration increases. The phenomenon is more important for invertase. These results are best explained by supposing that invertase accumulates in a distinct population of lysosomes that can be individualized as a result of the density increase they are subjected to by the invertase they accumulate. It is proposed that these lysosomes mainly originate from non-parenchymal cells of the liver.  相似文献   

12.
The modifying effect of sucrose on glutamate dehydrogenase (GDH) activity and isoenzyme pattern was investigated in isolated embryos of lupine ( Lupinus luteus L.), cultured in vitro in a medium with sucrose (+S) or without sucrose (−S) and exposed to cadmium (Cd) and lead (Pb) stress. Sucrose starvation of lupine embryos led to a rapid increase in the specific activity of GDH, immunoreactive β-polypeptide and it was accompanied by appearance of new cathodal isoforms of enzyme. This suggests that isoenzymes induced in lupine embryos by sucrose starvation combine into GDH hexamers with the predominance of β-GDH subunits synthetized under GDH1 gene control. The addition of sucrose to the medium caused an opposite effect. Along with upregulation of catabolic activity of GDH by sucrose starvation, activity of proteolytic enzymes was also induced. These data can point to regulatory mechanism implying a sucrose dependent repression of the GDH1 gene according to the mechanism of catabolic repression. Treatment of embryos with Cd 2+ or Pb2+ resulted in ammonium accumulation in the tissues, accompanied by an increase in anabolic activity of GDH and activity of anodal isoenzymes, in both (+S) and (−S) embryos without new de novo synthesis of α subunit proteins. Thus, GDH isoenzyme profiles may reflect the physiological function of GDH, which appears to be an important link of metabolic adaptation in cells, aimed at using carbon sources other than sugar during carbohydrate starvation (catabolic activity of GDH) and protecting plant tissues against ammonium accumulated because of heavy metal stress (anabolic activity of GDH).  相似文献   

13.
A new biosensor for specific determination of sucrose was developed using an oxidoreductase of Zymomonas mobilis and invertase. Cells of Z. mobilis were permeabilized with toluene in order to utilize the enzymes of glucose-fructose oxidoreductase and gluconolactonase inside the intact cells. Permeabilized cells and invertase were coimmobilized in a gelatin membrane, and a whole cell enzyme electrode was constructed by fixing the membrane on a pH electrode. The production of hydrogen ion was detected using the biosensor-connected microcomputer, and the concentration of sucrose was determined by using both the initial rate and the steady-state methods. Optimum conditions for biosensor response were pH 6.2 and temperature 35 degrees C. The effect of interfering compounds on the electrode response was investigated, and the interference by various sugars was eliminated by determining sucrose concentration using the steady-state method. The biosensor developed is simple and reproducible, and the calibration curve for sucrose is linear up to 70 g/L.  相似文献   

14.
Phloem unloading was studied in potato plants in real time during the early stages of tuberization using carboxyfluorescein (CF) as a phloem-mobile tracer, and the unloading pattern was compared with autoradiography of tubers that had transported (14)C assimilates. In stolons undergoing extension growth, apoplastic phloem unloading predominated. However, during the first visible signs of tuberization, a transition occurred from apoplastic to symplastic transport, and both CF and (14)C assimilates subsequently followed identical patterns of phloem unloading. It is suggested that the switch to symplastic sucrose unloading may be responsible for the upregulation of several genes involved in sucrose metabolism. A detailed analysis of sugar levels and (14)C sugar partitioning in tuberizing stolons revealed a distinct difference between the apical region of the tuber and the subapical region. Analysis of invertase activity in nontuberizing and tuberizing stolons revealed a marked decline in soluble invertase in the subapical region of swelling stolons, consistent with the switch from apoplastic to symplastic unloading. However, cell wall-bound invertase activity remained high in the apical 1 to 2 mm of tuberizing stolons. Histochemical analysis of potato lines transformed with the promoter of an apoplastic invertase gene (invGE) linked to a reporter gene also revealed discrete gene expression in the apical bud region. Evidence is presented that the apical and lateral tuber buds function as isolated domains with respect to sucrose unloading and metabolism.  相似文献   

15.
The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.Abbreviations CaMV Cauliflower Mosaic Virus - WT wild type  相似文献   

16.
Baker's yeast invertase was found to catalyse transfructosylation reactions in aqueous and anhydrous organic media with sucrose as a substrate, leading to the formation of five intermediate fructans in addition to the release of D-glucose (D-Glc)and D-fructose (D-Fru). All the reaction products were separated and quantitatively estimated using high performance anion exchange-pulsed amperometric detection equipment. The unknown products were subsequently identified by linkage analysis as beta-D-Fru-(2 --> 1)-beta-D-Fru-(2 --> 1)- alpha-D-glucopyranoside (1-kestose), beta-D-Fru- (2 --> 6)-alpha-D-glucopyranoside (6-beta-fructofuranosylglucose), beta-D-Fru-(2 -->1) -beta-D-fructofuranoside (inulobiose), beta-D-Fru-(2 --> 6)-beta-D-Fru-(2 --> 1)-alpha-D-glucopyranoside (6-kestose) and beta-D-Fru-(2 --> 6)-alpha-D-Glc-(1 --> 2)-beta-D-fructofuranoside (neokestose); and this last was eluted together with a disaccharide. The time-course of sucrose hydrolysis via fructan production in 2 ml of a 50 mM sodium acetate buffer (pH 4.5) containing 0.2 M sucrose and 25 U of invertase was different from that in 2 ml of anhydrous toluene with 1.46 M sucrose and 1,000 U of invertase as a suspended powder. Under the latter experimental conditions, invertase was found to exhibit cyclic behaviour, where sucrose was degraded and subsequently synthesised. This observation has not yet been reported, as far as we know.  相似文献   

17.
18.
宁夏枸杞果实糖积累和蔗糖代谢相关酶活性的关系   总被引:9,自引:2,他引:7  
通过对枸杞果实发育过程中果实生长模式、蔗糖、果糖、葡萄糖和淀粉含量及糖代谢相关酶活性的测定,研究了宁夏枸杞果实生长发育过程中糖的代谢积累与相关酶活性的关系.结果表明:(1)宁夏枸杞果实发育呈双S"曲线,果实主要以积累己糖为主.(2)蔗糖磷酸合成酶(SPS)活性在果实发育初期处于下降的趋势,在花后19d开始上升,果实转色后又逐渐下降;蔗糖合成酶(SS)活性总体表现为SS分解方向的活性大于SS合成方向的活性,说明枸杞果实发育过程中,SS的活性主要以分解方向的为主;酸性转化酶(AI)和中性转化酶(NI)的活性随果实发育呈上升趋势,但在果实成熟后期有所下降,且AI和NI活性高于合成酶类的活性,较高的转化酶类活性促进了果实内部己糖的积累.(3)在枸杞果实生长发育中,葡萄糖和果糖含量与AI和NI均呈极显著正相关,而与其它酶不具有相关性.说明AI和NI在宁夏枸杞果实的糖代谢中起着主要的调控作用.  相似文献   

19.
* Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.  相似文献   

20.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号