首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang M  Davidian M 《Biometrics》2008,64(2):567-576
Summary .   A general framework for regression analysis of time-to-event data subject to arbitrary patterns of censoring is proposed. The approach is relevant when the analyst is willing to assume that distributions governing model components that are ordinarily left unspecified in popular semiparametric regression models, such as the baseline hazard function in the proportional hazards model, have densities satisfying mild "smoothness" conditions. Densities are approximated by a truncated series expansion that, for fixed degree of truncation, results in a "parametric" representation, which makes likelihood-based inference coupled with adaptive choice of the degree of truncation, and hence flexibility of the model, computationally and conceptually straightforward with data subject to any pattern of censoring. The formulation allows popular models, such as the proportional hazards, proportional odds, and accelerated failure time models, to be placed in a common framework; provides a principled basis for choosing among them; and renders useful extensions of the models straightforward. The utility and performance of the methods are demonstrated via simulations and by application to data from time-to-event studies.  相似文献   

2.
MALANI  HINA MEHTA 《Biometrika》1995,82(3):515-526
Disease markers are time-dependent covariates which describeprogression towards development of disease. Traditional methodsin survival analysis do not make use of available data on thesemarkers to recover additional information from censored individuals.Using a heuristic modification of the redistribution to theright algorithm (Efron, 1967), a new approach for recoveringinformation for censored individuals using disease markers isproposed. Additionally, the statistical properties of the proposedmethod are examined. There are two possible advantages to thismodification: (i) bias reduction when censoring is informative,and (ii) an increase in efficiency in the case of truly noninformativecensoring.  相似文献   

3.
Liu L  Huang X  O'Quigley J 《Biometrics》2008,64(3):950-958
Summary .   In longitudinal observational studies, repeated measures are often taken at informative observation times. Also, there may exist a dependent terminal event such as death that stops the follow-up. For example, patients in poorer health are more likely to seek medical treatment and their medical cost for each visit tends to be higher. They are also subject to a higher mortality rate. In this article, we propose a random effects model of repeated measures in the presence of both informative observation times and a dependent terminal event. Three submodels are used, respectively, for (1) the intensity of recurrent observation times, (2) the amount of repeated measure at each observation time, and (3) the hazard of death. Correlated random effects are incorporated to join the three submodels. The estimation can be conveniently accomplished by Gaussian quadrature techniques, e.g., SAS Proc NLMIXED . An analysis of the cost-accrual process of chronic heart failure patients from the clinical data repository at the University of Virginia Health System is presented to illustrate the proposed method.  相似文献   

4.
5.
6.
In the two-sample comparison of survival times with long-term survivors, the overall difference between the two distributions reflects differences occurring in early follow-up for susceptible subjects and in long-term follow-up for nonsusceptible subjects. In this setting, we propose statistics for testing (i) no overall, (ii) no short-term, and (iii) no long-term difference between the two distributions to be compared. The statistics are derived as follows. A semiparametric model is defined that characterizes a short-term effect and a long-term effect. By approximating this model about no difference in early survival, a time-dependent proportional hazards model is obtained. The statistics are obtained from this working model. The asymptotic distributions of the statistics for testing no overall or no short-term effects are ascertained, while that of the statistic for testing no long-term effect is valid only when the short-term effect is small. Simulation studies investigate the power properties of the proposed tests for different configurations. The results show the interesting behavior of the proposed tests for situations where a short-term effect is expected. An example investigating the impact of progesterone receptors status on local tumor relapse for patients with early breast cancer illustrates the use of the proposed tests.  相似文献   

7.
We consider the problem of jointly modeling survival time and longitudinal data subject to measurement error. The survival times are modeled through the proportional hazards model and a random effects model is assumed for the longitudinal covariate process. Under this framework, we propose an approximate nonparametric corrected-score estimator for the parameter, which describes the association between the time-to-event and the longitudinal covariate. The term nonparametric refers to the fact that assumptions regarding the distribution of the random effects and that of the measurement error are unnecessary. The finite sample size performance of the approximate nonparametric corrected-score estimator is examined through simulation studies and its asymptotic properties are also developed. Furthermore, the proposed estimator and some existing estimators are applied to real data from an AIDS clinical trial.  相似文献   

8.
Rizopoulos D 《Biometrics》2011,67(3):819-829
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.  相似文献   

9.
Hsieh F  Tseng YK  Wang JL 《Biometrics》2006,62(4):1037-1043
The maximum likelihood approach to jointly model the survival time and its longitudinal covariates has been successful to model both processes in longitudinal studies. Random effects in the longitudinal process are often used to model the survival times through a proportional hazards model, and this invokes an EM algorithm to search for the maximum likelihood estimates (MLEs). Several intriguing issues are examined here, including the robustness of the MLEs against departure from the normal random effects assumption, and difficulties with the profile likelihood approach to provide reliable estimates for the standard error of the MLEs. We provide insights into the robustness property and suggest to overcome the difficulty of reliable estimates for the standard errors by using bootstrap procedures. Numerical studies and data analysis illustrate our points.  相似文献   

10.
Berhane K  Weissfeld LA 《Biometrics》2003,59(4):859-868
As part of the National Surgical Adjuvant Breast and Bowel Project, a controlled clinical trial known as the Breast Cancer Prevention Trial (BCPT) was conducted to assess the effectiveness of tamoxifen as a preventive agent for breast cancer. In addition to the incidence of breast cancer, data were collected on several other, possibly adverse, outcomes, such as invasive endometrial cancer, ischemic heart disease, transient ischemic attack, deep vein thrombosis and/or pulmonary embolism. In this article, we present results from an illustrative analysis of the BCPT data, based on a new modeling technique, to assess the effectiveness of the drug tamoxifen as a preventive agent for breast cancer. We extended the flexible model of Gray (1994, Spline-based test in survival analysis, Biometrics 50, 640-652) to allow inference on multiple time-to-event outcomes in the style of the marginal modeling setup of Wei, Lin, and Weissfeld (1989, Regression analysis of multivariate incomplete failure time data by modeling marginal distributions, Journal of the American Statistical Association 84, 1065-1073). This proposed model makes inference possible for multiple time-to-event data while allowing for greater flexibility in modeling the effects of prognostic factors with nonlinear exposure-response relationships. Results from simulation studies on the small-sample properties of the asymptotic tests will also be presented.  相似文献   

11.
12.
The modeling of lifetime (i.e. cumulative) medical cost data in the presence of censored follow-up is complicated by induced informative censoring, rendering standard survival analysis tools invalid. With few exceptions, recently proposed nonparametric estimators for such data do not extend easily to handle covariate information. We propose to model the hazard function for lifetime cost endpoints using an adaptation of the HARE methodology (Kooperberg, Stone, and Truong, Journal of the American Statistical Association, 1995, 90, 78-94). Linear splines and their tensor products are used to adaptively build a model that incorporates covariates and covariate-by-cost interactions without restrictive parametric assumptions. The informative censoring problem is handled using inverse probability of censoring weighted estimating equations. The proposed method is illustrated using simulation and also with data on the cost of dialysis for patients with end-stage renal disease.  相似文献   

13.
Lin H  Guo Z  Peduzzi PN  Gill TM  Allore HG 《Biometrics》2008,64(4):1032-1042
SUMMARY: We propose a general multistate transition model. The model is developed for the analysis of repeated episodes of multiple states representing different health status. Transitions among multiple states are modeled jointly using multivariate latent traits with factor loadings. Different types of state transition are described by flexible transition-specific nonparametric baseline intensities. A state-specific latent trait is used to capture individual tendency of the sojourn in the state that cannot be explained by covariates and to account for correlation among repeated sojourns in the same state within an individual. Correlation among sojourns across different states within an individual is accounted for by the correlation between the different latent traits. The factor loadings for a latent trait accommodate the dependence of the transitions to different competing states from a same state. We obtain the semiparametric maximum likelihood estimates through an expectation-maximization (EM) algorithm. The method is illustrated by studying repeated transitions between independence and disability states of activities of daily living (ADL) with death as an absorbing state in a longitudinal aging study. The performance of the estimation procedure is assessed by simulation studies.  相似文献   

14.
Ye W  Lin X  Taylor JM 《Biometrics》2008,64(4):1238-1246
SUMMARY: In this article we investigate regression calibration methods to jointly model longitudinal and survival data using a semiparametric longitudinal model and a proportional hazards model. In the longitudinal model, a biomarker is assumed to follow a semiparametric mixed model where covariate effects are modeled parametrically and subject-specific time profiles are modeled nonparametrially using a population smoothing spline and subject-specific random stochastic processes. The Cox model is assumed for survival data by including both the current measure and the rate of change of the underlying longitudinal trajectories as covariates, as motivated by a prostate cancer study application. We develop a two-stage semiparametric regression calibration (RC) method. Two variations of the RC method are considered, risk set regression calibration and a computationally simpler ordinary regression calibration. Simulation results show that the two-stage RC approach performs well in practice and effectively corrects the bias from the naive method. We apply the proposed methods to the analysis of a dataset for evaluating the effects of the longitudinal biomarker PSA on the recurrence of prostate cancer.  相似文献   

15.
An efficient method is presented to compute the probabilityof selection of a specified subset from the set of all subsetsof a fixed size where the subsets are taken from a populationwhose units have varying individual probabilities of selection.The problem is motivated by the computation of the exact marginallikelihood for the Cox proportional hazards model.  相似文献   

16.
Hazard regression for interval-censored data with penalized spline   总被引:1,自引:0,他引:1  
Cai T  Betensky RA 《Biometrics》2003,59(3):570-579
This article introduces a new approach for estimating the hazard function for possibly interval- and right-censored survival data. We weakly parameterize the log-hazard function with a piecewise-linear spline and provide a smoothed estimate of the hazard function by maximizing the penalized likelihood through a mixed model-based approach. We also provide a method to estimate the amount of smoothing from the data. We illustrate our approach with two well-known interval-censored data sets. Extensive numerical studies are conducted to evaluate the efficacy of the new procedure.  相似文献   

17.
Brown ER  Ibrahim JG 《Biometrics》2003,59(2):221-228
This article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates. This type of approach is becoming increasingly essential in many applications, such as HIV and cancer vaccine trials, where patients' responses are highly diverse and may not be easily modeled with known distributions. An example will be presented from a clinical trial of a cancer vaccine where the survival outcome is time to recurrence of a tumor. Immunologic measures believed to be predictive of tumor recurrence were taken repeatedly during follow-up. We will present an analysis of this data using our new semiparametric Bayesian hierarchical joint modeling methodology to determine the association of these longitudinal immunologic measures with time to tumor recurrence.  相似文献   

18.
Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used to obtain information additional to the relative risk estimates of covariates.  相似文献   

19.
Shared frailty models for recurrent events and a terminal event   总被引:1,自引:0,他引:1  
Liu L  Wolfe RA  Huang X 《Biometrics》2004,60(3):747-756
There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless, 2002, Statistical Methods in Medical Research 11, 141-166). In many situations, a terminating event such as death can happen during the follow-up period to preclude further occurrence of the recurrent events. Furthermore, the death time may be dependent on the recurrent event history. In this article we consider frailty proportional hazards models for the recurrent and terminal event processes. The dependence is modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects can be taken into account in the model as well. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with Metropolis-Hastings sampler in the E-step. An analysis of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution with marginal proportional hazards and yields an estimate of the degree of dependence.  相似文献   

20.
One of factor analysis techniques, viz. the principal components method, and the proportional hazards regression model (Cox, 1972) are applied in this work to study the significance of various factors characterizing the patient, the disease, and the method of treatment in the survival. The application of these methods to analysis of survival data for cervical cancer patients has shown, in particular, the tumor growth rate to be the crucial factor in distribution of the patients survival time and to be even more important than the therapy characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号