首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

2.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

3.
We have investigated the relative roles of angiotensin II on the renal function and urinary excretion of some prostanoids in healthy women submitted to different conditions of potassium balance. To this aim we have evaluated the effects of an acute inhibition of angiotensin converting enzyme by enalapril (E). The renal function was explored by clearance (cl.) method during induced hypotonic polyuria (oral water load followed by 5% dextrose solution infusion). During 60 min cl. period the urinary PGE2, 6-keto-PGF1 alpha and TxB2 were determined by RIA method. Each subject received paired studies, in absence and presence of E (10 mg administered per os 1 hour before the water load). Basal values of plasma renin activity (PRA) and urinary aldosterone (excreted during the 24 hours before the water load) were also determined by RIA method. This study protocol was applied in normal potassium balance (n = 6) and induced moderate potassium depletion (n = 6). This paper concerns the group in potassium depletion in both absence (D4) and presence of E (D4.E). Potassium depletion was induced by adaptation to a normal sodium (150 mmol/d) and low potassium (< or = 10 mmol/d) dietary intake combined to natriuretic treatment. The water and NaCl net losses were restored by 0.9% NaCl solution infusion. The cumulative potassium deficit achieved at the end of the depletive treatment was 214 +/- 54 mmol. This treatment induced significant decrease in basal plasma potassium concentration and increase in PRA without affecting urinary aldosterone and plasma sodium concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Diabetes mellitus (DM) is characterized by alterations in fluid balance and blood volume homeostasis. Renal interstitial hydrostatic pressure (RIHP) has been shown to play a critical role in mediating sodium and water excretion under various conditions. The objective of this study was to determine the effects of immediate and delayed initiation of insulin treatment on the restoration of the relationship between RIHP, natriuretic, and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ; 65 mg/kg body wt). Four groups of female Sprague-Dawley rats were studied: normal control group (C), untreated diabetic group (D), immediate insulin-treated diabetic group (DI; treatment with insulin for 2 wk was initiated immediately when diabetes was confirmed, which was 2 days after STZ injection), and delayed insulin-treated diabetic group (DDI; treatment with insulin for 2 wk was initiated 2 wk after STZ injection). RIHP and sodium and water excretions were measured before and during VE (5% body wt/30 min) in the four groups of anesthetized rats. VE significantly increased RIHP, fractional excretion of sodium (FE(Na)), and urine flow rate (V) in all groups of rats. Basal RIHP, RIHP response to VE (Delta RIHP), and FE(Na) and V responses to VE (Delta FE(Na) and Delta V) were significantly lower in the D group compared with the C group of rats. Delta RIHP was significantly higher in both DI and DDI groups compared with D group but was similar to that of the C group of rats. While in the DI group the Delta FE(Na) response to VE was restored, Delta FE(Na) was significantly increased in DDI compared with D group, but it remained lower than that of the C group. In conclusion, insulin treatment initiated immediately after the onset of diabetes restores basal RIHP and RIHP, natriuretic, and diuretic responses to VE; however, delayed insulin treatment restores the basal RIHP and RIHP response to VE but does not fully restore the natriuretic response to VE.  相似文献   

5.
We have investigated the effective role of angiotensin II on the renal function and urinary excretion of some prostanoids in healthy women submitted to different conditions of potassium balance. To this aim we have evaluated the effects of an acute inhibition of angiotensin converting enzyme by enalapril (E). The renal function was explored by clearance (cl.) method during induced hypotonic polyuria (oral water load followed by 5% dextrose solution infusion). During 60 min cl. period the urinary PGE2, 6-keto-PGF1 alpha and TxB2 were determined by RIA method. Each subject received paired studies, in absence and presence of E (10 mg administered per os 1 hour before the water load). Basal values of plasma renin activity (PRA) and urinary aldosterone (excreted during the 24 hours before the water load) were also determined by RIA method. This study protocol was applied in normal potassium balance (n = 6) and induced moderate potassium depletion (n = 6). This paper concerns the group in normal potassium balance in both absence (N3) and presence of E (N3.E). All subjects were submitted to normal dietary intake of sodium (150 mmol/d) and potassium (50 mmol/d). The basal values of PRA, urinary aldosterone and plasma electrolytes were in the normal range. The only significant effect produced by E was a reduction in mean arterial pressure, without significant changes in creatinine cl., urinary hydro-electrolyte excretions as well as urinary excretions of prostanoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Circadian rhythms in urinary water, sodium, potassium and proteins excretion are studied in 45 rats living alone in metabolism cages. Urines are collected during 4 consecutive 6 hours long periods during 2 consecutive days. Large circadian variations of these parameters (especially water and proteins excretion and urinary protein concentration) are described. The influence of feeding rhythms on the circadian urinary excretion rhythms is discussed. It is proposed that nightly renal hemodynamic changes (during meal digestion or with high renin plasma levels) can induce modifications in glomerular filtration rate and electrolytes and macromolecules transglomerular flow.  相似文献   

7.
Following a subcutaneous injection of adrenaline (300 mug/kg), blood-glucose levels were lower in rats treated chronically with adrenaline (300 mug/kg twice a day for 28 days) than in control rats during at least 2.5 h after the injection. To explain this difference of response, the turnover rate of glucose was measured in control and adrenaline-treated rats during adrenaline infusion (0.75 mug/kg- minus 1 min- minus 1), with [U- minus 14C]glucose as tracer. It was found that the rate of appearance of glucose was greater in the control than in the adrenaline-treated group after a 120-min infusion of adrenaline. The rate of disappearance of glucose in the treated rats increased during the first 60 min of infusion and stayed at this elevated level for a subsequent 2 h, whereas in the control rats, it remained unchanged at the beginning of adrenaline infusion and significantly increased only during the second and third hours of infusion. In addition, the metabolic- clearance rate of glucose was not modified by adrenaline in the treated group, but in the control group, the initial clearance rate was significantly less than in the treated group, and decreased during the first hour of adrenaline infusion even though blood glucose reached values of 244 mg/100 ml. ,rom these data, it is suggested that rats adapt to a chronic exogenous supply of adrenaline by a reduced increase in glucose production in response to adrenaline infusion and a better glucose utilization, which possibly indicates a decrease in the inhibitory effect of adrenaline on insulin secretion.  相似文献   

8.
Subjects who slept for 4 h from 0000, and for a second 4 h variously distributed over the day, have provided values for rectal temperature and for urinary excretion of water, potassium, sodium, chloride, phosphate, creatinine, calcium and urate in the sleeping subject at all hours of the 24. These are compared with similar values in the wakeful subject. Temperature was lower during sleep at all hours except 1000 and 1200, and the difference was maximal shortly before 0000. At all hours potassium excretion was lower and phosphate excretion higher during sleep. Cosinor analysis of the different variables in the sleeping subject is compared with that in subjects following nycthemeral habits, and the interaction between endogenous rhythms and external influences such as sleep is discussed. The phasing of the temperature and urinary rhythms was essentially normal by the end of the observations. By contrast in a subject who slept at irregular hours mimicking the habits of an air pilot a free-running rhythm unrelated to the habits of sleep emerged. When he was finally living again on normal time his temperature and urinary acrophases had moved to the middle of the night. Phosphate excretion was largely exogenous, falling consistently when subjects rose after 8 h, but not after 4 h of sleep.  相似文献   

9.
Only part of the effect of dietary protein on urinary calcium excretion can be ascribed to sulfur amino acids. We hypothesized that chloride, another factor often associated with isolated proteins, and another amino acid, lysine, affect utilization of calcium. The effects of supplemental dietary chloride, inorganic or organic, on calcium, phosphorus, and magnesium utilization were studied in two rat studies. Weanling Sprague-Dawley rats were fed semi-purified diets that contained moderate (1.8 mg Cl/g diet) or supplemental (15.5 mg Cl/g diet) chloride as sodium chloride, potassium chloride, or lysine monohydrochloride with or without calcium carbonate for 56 or 119 days. Rats fed supplemental sodium chloride or potassium chloride had higher urinary phosphorus excretion, more efficient phosphorus absorption, but unchanged tissue phosphorus levels after 7 and 16 weeks of dietary treatment as compared to rats fed moderate chloride. Rats fed supplemental sodium chloride or potassium chloride excreted more calcium in urine at 7 weeks and absorbed calcium less efficiently at 16 weeks. Tissue calcium concentrations were unaffected, but total tibia magnesium and plasma magnesium concentrations were lower in rats fed supplemental sodium chloride or potassium chloride than those fed moderate chloride. Lysine chloride with or without additional calcium elevated urinary calcium excretion even more than sodium chloride and potassium chloride ingestion. Rats fed lysine chloride with supplemental calcium had smaller apparent absorption and urinary losses of phosphorus and magnesium after 16 weeks and lower tibia and plasma magnesium concentrations than rats fed lysine chloride.  相似文献   

10.
The effect of acute infusion of the prostaglandin synthetase inhibitors — meclofenamate or indomethacin — was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

11.
The effect of acute infusion of the prostaglandin synthetase inhibitors - meclofenamate or indomethacin - was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

12.
The degree of water transport via aquaporin-2 (AQP2) water channels in renal collecting duct principal cells is reflected by the level of the urinary excretion of AQP2 (u-AQP2). In rats, the AQP2 expression varies with sodium intake. In humans, the effect of sodium intake on u-AQP2 and the underlying mechanisms have not previously been studied. We measured the effect of 4 days of high sodium (HS) intake (300 mmol sodium/day; 17.5 g salt/day) and 4 days of low sodium (LS) intake (30 mmol sodium/day; 1.8 g salt/day) on u-AQP2, fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), urinary excretion of PGE(2) (u-PGE(2)) and cAMP (u-cAMP), and plasma concentrations of vasopressin (AVP), renin (PRC), ANG II, aldosterone (Aldo), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) in a randomized, crossover study of 21 healthy subjects, during 24-h urine collection and after hypertonic saline infusion. The 24-h urinary sodium excretion was significantly higher during HS intake (213 vs. 41 mmol/24 h). ANP and BNP were significantly lower and PRC, ANG II, and Aldo were significantly higher during LS intake. AVP, u-cAMP, and u-PGE(2) were similar during HS and LS intake, but u-AQP2 was significantly higher during HS intake. The increases in AVP and u-AQP2 in response to hypertonic saline infusion were similar during HS and LS intake. In conclusion, u-AQP2 was increased during HS intake, indicating that water transport via AQP2 was increased. The effect was mediated by an unknown AVP-independent mechanism.  相似文献   

13.
The relationship of urinary kallikrein excretion to urine volume, and to urinary sodium and potassium excretions was studied in normal rats during furosemide diuresis and superimposed injection of amiloride, a K+-sparing diuretic. Continuous infusion of furosemide increased urinary kallikrein, sodium and potassium excretions and the urine volume. Amiloride injection during furosemide diuresis caused further increase in diuresis and natriuresis, but a prompt decrease in urinary kallikrein excretion to basal level, and potassium excretion to below the basal level. The significant correlation of urinary kallikrein excretion to urinary potassium excretion, but not to urine volume and urinary sodium excretion after amiloride injection suggests that the major determinant of urinary kallikrein excretion is renal potassium secretion through a mechanism that is affected by amiloride.  相似文献   

14.
Beta-adrenoceptor stimulation in vivo shifts potassium into the cells. To examine whether human erythrocytes participate in this process, we measured, along with serum or plasma potassium, the concentrations of potassium and sodium in erythrocytes. Beta-adrenoceptor stimulation was obtained by infusion of either fenoterol or hexoprenaline into 6 volunteers at rest or by endogenous amines provoked in 14 volunteers during ergometric exercise. Metabolic effects were followed at rest on serum insulin, C-peptide, and growth hormone levels, and during exercise on pH on lactate concentration in blood. The potassium concentration (mean +/- S.E.M.) dropped (p less than 0.01) in serum from 4.64 +/- 0.37 to 3.19 +/- 0.43 mmol x l-1 in the first hour at rest and in plasma from 5.70 +/- 0.93 to 4.63 +/- 0.45 in 90 sec directly after exercise. The concentration of erythrocyte sodium dropped (p less than 0.001) from 9.68 +/- 0.73 to 8.81 +/- 0.62 mmol x l-1 in cells and from 9.62 +/- 1.16 to 8.55 +/- 1.24 during exercise for 90 s, respectively. Changes in the concentration ratio of cellular sodium to potassium confirmed this sodium shift. An increased sodium transport in erythrocytes due to beta-adrenoceptor stimulation in vivo appears to complement a shift of serum potassium into the cells and may be mediated by the membrane-bound sodium, potassium ATPase.  相似文献   

15.
Experiments were carried out in 10 chronically catheterised fetal sheep aged 121-128 days. In 3 animals infusion of aldosterone (5 micrograms/h) caused a fall in fetal urinary Na/K ratio; an effect that was reversed by spironolactone 2.5 mg/kg followed by an infusion of 100 micrograms/h per kg. In 9 fetal sheep which had no previous treatment the same doses of spironolactone had no effect on fractional sodium excretion although the fractional excretion of potassium decreased (P less than 0.05) and the urinary sodium potassium (Na/K) ratio rose (P less than 0.05). Amiloride had a variable effect on sodium excretion but the fractional excretion of potassium decreased markedly (P less than 0.05). Thus in chronically catheterised fetal sheep, endogenous mineralocorticoid activity altered urinary potassium excretion and the urinary Na/K ratio. However this activity was low, as distal blockade with amiloride further decreased the fractional excretion of potassium and increased the urinary Na/K ratio.  相似文献   

16.
To investigate the influence of central venous pressure (CVP) changes on plasma arginine vasopressin (pAVP), 8 normal male subjects were studied twice before, during and after immersion to the neck in water at 35.1 degrees +/- 0.1 degrees C (mean +/- SE) for 6 h. After 2 h of immersion, blood volume was either expanded (WIEXP) by intravenous infusion of 2.0 1 of isotonic saline during 2 h or reduced by loss of 0.5 1 of blood during 30 min (WIHEM). The two studies were randomised between subjects. WIEXP increased CVP, systolic arterial pressure (SAP), diuresis, natriuresis, kaliuresis and osmolar clearance compared to WIHEM while haematocrit, haemoglobin concentration and urine osmolality decreased. Heart rate, mean arterial (MAP) and diastolic arterial pressure, plasma osmolality, plasma sodium, plasma potassium and free water clearance did not differ significantly in the two studies. pAVP was significantly higher after 6 h in WIHEM than after 6 h in WIEXP (2.0 +/- 0.2 vs. 1.6 +/- 0.2 pg X ml-1, mean +/- SE; P less than 0.05). pAVP values were corrected for changes in plasma volume due to infusion in order properly to reflect AVP secretion. In conclusion, there was a weak, but significant, negative correlation between CVP and pAVP during the two studies, while during recovery from WIHEM and WIEXP decrements in SAP and MAP correlated significantly and strongly with increases in pAVP. It is therefore concluded that it is the arterial baroreceptors rather than the cardiopulmonary mechanoreceptors which are of importance in AVP regulation in man.  相似文献   

17.
We have investigated the relative roles of some renal prostanoids and angiotensin II in the hypokalemic renal dysfunction. To this aim we have evaluated the renal function in healthy women in induced potassium depletion of moderate degree before and after acute inhibition of cyclooxygenase (indomethacin, I) or angiotensin converting enzyme (enalapril, E). The renal function was explored by clearance (cl.) method during hypotonic polyuria induced by oral water load followed by 5% dextrose solution infusion; the urinary PGE2, 6-keto-PGF1 alpha and TxB2 were determined by RIA method. Potassium depletion was induced in 12 subjects by adaptation to low potassium (< or = 10 mmol/d) and normal sodium (150 mmol/d) dietary intake combined to natriuretic treatment. The water and NaCl net losses were restored by 0.9% NaCl solution infusion. In 6 subjects paired functional studies were performed in absence (D3) and presence of I (D3.I), 100 mg administered i.m. immediately before the water load. In other 6 subjects, paired studies were performed in absence (D4) and presence of E (D4.E), 10 mg administered per os 1 hour before the water load. No significant difference between D3 and D4 was observed as regards the potassium cumulative deficit as well as the basal values of plasma potassium concentration and plasma renin activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Haematocrit values, plasma osmolality and the plasma concentrations of sodium, potassium, chloride and insulin were measured in carotid arterial blood before, during and after intravenous infusion of NaCl (0.5 mol 1-1) and KCl (0.5 mol 1-1) at 2 ml min-1 for 105 min into six conscious splenectomized sheep. Hypertonic NaCl infusion was associated with a fall in haematocrit of 1.30 +/- 0.10% (P less than 0.001) and no consistent change in plasma insulin concentration occurred during this infusion. Hypertonic KCl infusion caused the haematocrit to increase by 1.70 +/- 0.39% (P less than 0.001) and the plasma insulin concentration to increase by 60.0 +/- 16.3 mu U ml-1 (P less than 0.01). It was concluded that this increase in insulin concentration was caused by elevation of the plasma potassium concentration and was not due to coincident increases in plasma chloride concentration or osmolality. Shrinkage of the extracellular fluid volume during KCl infusion made no major contribution to the increase in insulin concentration which was probably the result of increased release from the pancreas.  相似文献   

19.
To test the effects of hydrochlorothiazide (HCTZ) alone and in combination with amiloride or tolmetin in the treatment of nephrogenic diabetes insipidus, metabolic studies of 12 days each were carried out in 36 male, Brattleboro rats. They were divided into five groups as follows: (A) controls; (B) high dose HCTZ at 6 mg/rat/day; (C) low dose HCTZ at 3 mg/rat/day; (D) HCTZ identical to (C) but with addition of amiloride at 0.6 mg/rat/day; (E) HCTZ identical to (C) but with addition of tolmetin at 40 mg/rat/day. The immediate response to treatment was a significant increase in urinary sodium excretion from mean values (mEq/kg/day) of less than 11 to values higher than 13, except group E with mean value of 12. There was marked increase in urinary potassium excretion (mEq/kg/day), from mean control value of 15.5 to 21.5, 20.8, 18.5 and 17.7 in groups B, C, D and E, respectively. During the last three days of the study, mean urine osmolality (Uosm) and free water reabsorption (TCH2O) increased significantly: [formula: see text]. These indices were higher in groups B, D and E than in group C. Serum osmolality decreased only in groups B, C and D but not in the HCTZ-tolmetin groups. Similarly, serum sodium concentration was significantly lower in groups B, C and D compared to the control and the HCTZ-tolmetin groups. Serum potassium concentration was reduced in all the treated groups, but in both the groups treated with HCTZ-amiloride and HCTZ-tolmetin, the reduction was smaller than the one observed in the high-HCTZ treated group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The renal function has been evaluated by clearance (cl.) method during hypotonic polyuria and successive moderate antidiuresis induced by a low dose of lysine-8-vasopressin; four 15 min and two 60 min cl. periods were performed, respectively. Glomerular filtration rate was estimated by creatinine cl.; the osmotic cl. (Cosm, CH2O), the absolute and fractional excretions of water, sodium, potassium and chloride were determined by usual methods. The urinary concentrations of PGE2, 6-keto-PGF1 alpha (6KPGF) and TxB2 were measured by RIA. The study protocol was applied in normal potassium balance and experimental potassium balance (KD), both in absence and presence of indomethacin. In KD groups with a potassium cumulative deficit of 198.4 +/- 22.2 meq (D3; n = 6) during polyuria significant correlations are consistent with the hypothesis that the lower the plasma potassium concentration is the higher the urinary chloride excretion and the inhibition of distal fractional chloride reabsorption. Moreover, by utilizing the polyuria and antidiuresis data pool, the effects of urine flow rate changes on PGE2 and 6KPGF urinary excretions are blunted as compared to normal potassium balance (n = 14). After indomethacin treatment (D3.I) the following functional relationships are disclosed: a) the lower the kaliemia is the lower the urinary chloride and potassium excretions and the higher the fractional isosmotic reabsorption; b) the lower the urinary potassium excretion is the lower the urinary chloride excretion. In both D3 and D3.I experimental groups the positive correlation between urinary chloride excretion and urinary potassium excretion is significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号