首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
《Genomics》2021,113(4):2304-2316
BackgroundJilin ginseng, Panax ginseng, is a valuable medicinal herb whose ginsenosides are its major bioactive components. The ginseng oxidosqualene cyclase (PgOSC) gene family is known to play important roles in ginsenoside biosynthesis, but few members of the gene family have been functionally studied.MethodsThe PgOSC gene family has been studied by an integrated analysis of gene expression-ginsenoside content correlation, gene mutation-ginsenoside content association and gene co-expression network, followed by functional analysis through gene regulation.ResultsWe found that five of the genes in the PgOSC gene family, including two published ginsenoside biosynthesis genes and three new genes, were involved in ginsenoside biosynthesis. Not only were the expressions of these genes significantly correlated with ginsenoside contents, but also their nucleotide mutations significantly influenced ginsenoside contents. These results were further verified by regulation analysis of the genes by methyl jasmonate (MeJA) in ginseng hairy roots. Four of these five PgOSC genes were mapped to the ginsenoside biosynthesis pathway. These PgOSC genes expressed differently across tissues, but relatively consistent across developmental stages. These PgOSC genes formed a single co-expression network with those published ginsenoside biosynthesis genes, further confirming their roles in ginsenoside biosynthesis. When the network varied, ginsenoside biosynthesis was significantly influenced, thus revealing the molecular mechanism of ginsenoside biosynthesis.ConclusionAt least five of the PgOSC genes, including the three newly identified and two published PgOSC genes, are involved in ginsenoside biosynthesis. These results provide gene resources and knowledge essential for enhanced research and applications of ginsenoside biosynthesis in ginseng.  相似文献   

7.
Researchers have widely adopted the hairy root culture system as a means for producing secondary metabolites, including ginsenosides from ginseng. Although bacterial genes are involved, the aspects of plant gene expression are unclear. Using a cDNA microarray approach, we identified genes that are differentially expressed in ginseng hairy roots afterAgrobacterium rhizogenes infection. Our goal was to gain an initial understanding of the correlation between hairy root morphology and ginsenoside production. Among the 250 genes analyzed here, 63 (including 14 that are unclassified) were differentially expressed in a hairy root line containing a high level of ginsenosides. Of the genes that had been functionally categorized, 29% and 17% were active in metabolism and stress responses, respectively. Most were primarily associated with ribosomal proteins, thereby functioning in protein synthesis and destination. Their expression was down-regulated in hairy roots having less lateral branching. This phenotype may have resulted from the manipulation of metabolic activities by the translational machinery.  相似文献   

8.
Calcium-dependent protein kinases (CDPKs) are proposed to play an essential role in plant defense responses. In this study, we aimed to define the full sequence of a CDPK gene of Panax ginseng and analyze its expression in roots, leaves, and cell cultures of P. ginseng, one of the most valuable Chinese traditional medicinal herbs. We isolated the full-length cDNA of a P. ginseng CDPK gene, which was designated PgCDPK1a. PgCDPK1a shares high sequence identity at the amino acidic level with previously reported CDPK sequences for other plant species. We analyzed PgCDPK1a expression in the leaves of wild-growing P. ginseng plants, and in the roots and leaves of cultivated P. ginseng plants growing in an open experimental nursery at a natural ginseng habitat. PgCDPK1a was more actively expressed in the young leaves of cultivated P. ginseng plants than in that of wild-growing ones. Finally, we analyzed the expression of the gene in control GV and five rolC and rolB transgenic callus cultures of P. ginseng with different levels of fresh biomass accumulation, pathogen-related gene expression, and ginsenoside production. We observed a strong positive correlation between fresh biomass accumulation of P. ginseng cell cultures and expression of the PgCDPK1a gene. There was a less clear negative correlation between the expression of pathogen-related genes and the content of ginsenosides with the PgCDPK1a expression in cell cultures of P. ginseng. Perhaps, PgCDPK1a is involved in ginseng growth, as a positive regulator.  相似文献   

9.
10.
11.
We isolated a gene encoding for farnesyl diphosphate synthase (FPS) from Panax ginseng, a species that produces a large quantity of triterpene saponins such as ginsenosides. The deduced amino acid sequence of PgFPS was 77, 84 and 95 % identical to those of Arabidopsis, Hevea, and Centella. Southern blot analysis indicated that P. ginseng contained more than two genes encoding for FPS. When the cDNA of PgFPS was expressed in Escherichia coli, the recombinant enzyme, purified with a His-tag column, was found to possess FPS activity. When cultures of ginseng hairy root were treated with 0.1 mM methyl jasmonate (MJ), PgFPS mRNA was detected within 12 h of the treatment, and achieved maximum after 24 h. Also FPS activity in the hairy root cultures after 12 h of MJ treatment was higher than that of the control.  相似文献   

12.
13.
Withania somnifera, also known as Indian ginseng is known to contain valuable bioactive compounds, called withanolides that structurally resemble ginsenosides of Panax ginseng. These compounds provide the basis of pharmacological relevance in traditional systems of medicine. In the present study, 150 hairy root lines of W. somnifera were induced of which nine fast growing lines were analysed for their growth and withanolide content. Hairy root line W9 was selected due to its high specific growth rate (0.196 ± 0.005 d?1) and high withanolide content. The response to different concentrations of elicitors (methyl jasmonate and P. indica cell homogenate) and various exposure durations was assessed in the W9 hairy root line. The withanolide content as well as the pattern of gene expression from MVA, MEP and sterol pathway, was evaluated using qPCR. Though gene expression and withanolide content were found to be elevated in almost all MeJ and CHP treatments, the exposure of hairy roots to 15 μM MeJ for 4 h gave the maximum withanolide yield. The results suggest that the elicitation potential of methyl jasmonate was higher than that of P. indica cell homogenate for increasing withanolide levels in hairy roots of W. somnifera.  相似文献   

14.
Expressed sequence tags (ESTs) provide a valuable tool that can be used to identify genes in secondary metabolite biosynthesis. Ginseng (Panax ginseng C.A Meyer) is a medicinal plant that accumulates ginsenosides in roots. We sequenced 11,636 ESTs from five ginseng libraries in order to create a gene resource for biosynthesis of ginsenosides, which are thought to be the major active component in roots. Only 59% of the ginseng ESTs exhibited significant homology to previously known polypeptide sequences. Stress- and pathogen-response proteins were most abundant in 4-year-old ginseng roots. ESTs involved in ginsenoside biosynthesis were identified by a keyword search of BLASTX results and a domain search of ginseng ESTs. We identified 4 oxidosqualene cyclase candidates involved in the cyclization reaction of 2,3-oxidosqualene, 9 nine cytochrome P450 and 12 glycosyltransferse candidates, which may be involved in modification of the triterpene backbone.Abbreviations cDNA Complementary DNA - ESTs Expressed sequence tagsCommunicated by I.S. Chung  相似文献   

15.
A culture of hairy roots ofPanax ginseng C.A. Meyer was set up in order to investigate the possibility of producing ginseng saponin. Roots cultured in 1/2 MS medium in the presence of 2 mg/L IAA and 0.1 mM spermidine showed the maximal growth rate, whereas other polyamines increased the growth of hairy roots only slightly or not at all. High saponin root contents were obtained in culture media supplemented with 0.5 mg/L GA and 1 mM putrescine.  相似文献   

16.
17.
18.
Plant-derived natural products have been and will continue to be valuable sources. Elicitors have been employed to modify cell metabolism in order to enhance the productivity of useful metabolites in plant cell/tissue cultures. In this study, several elicitors were used to improve the productivity of useful metabolites and to reduce culture time for archiving high concentration inP. ginseng hairy root cultures. The addition of chitosan, chitosan oligosaccharide and alginate oligosaccharide to the culture ofP. ginseng hairy roots caused growth to be inhibited with the increase in elicitor concentration. The usage of the chitosan elicitor andd-glucosamine caused a slight decrease in hairy root growth, whereas total ginseng saponin accumulated slightly with the increase in elicitor concentration. When gel beads were added to the culture medium at the initial period, hairy root growth was enhanced. The maximum growth was 1.35 times higher than that of the control at 1% (w/v). Total ginseng saponin content decreased due to the addition of alginate beads. This would result in consistent diffusion of lower levels of calcium ions during the culture period that promotes biomass growth.  相似文献   

19.
以雷公藤(Tripterygium wilfordii Hook.f.)发状根为试验材料,采用RT-PCR方法,克隆得到2个雷公藤鲨烯环氧酶编码基因,命名为TwSE1(GenBank登录号MG717395)和TwSE2(GenBank登录号MG717396)。序列分析表明,TwSE1和TwSE2的开放阅读框分别为1 578和1 584bp,分别编码525和527个氨基酸,2条序列相似性为76.18%,但N端序列不保守。实时荧光定量PCR检测雷公藤鲨烯环氧酶在不同组织部位的表达模式,以及雷公藤发状根受茉莉酸甲酯(MeJA)诱导后基因表达的结果表明,TwSE1、TwSE2基因在雷公藤根、茎、嫩叶、老叶、花中均有表达,TwSE1在花中表达丰度最高,在根中表达丰度最低;但TwSE2在花和嫩叶中表达量最高,在老叶中表达量最低,且TwSE2在各组织部位的表达量都低于TwSE1。雷公藤发状根经MeJA诱导后,TwSE1、TwSE2基因表达量均上升,都表现为表达量先上升后下降再上升的趋势,并于诱导后3h达到一个高水平表达,之后下降,在诱导12h后表达量又迅速上升;在相同诱导条件下,TwSE2基因表达水平的提高小于TwSE1基因。  相似文献   

20.
Woo SS  Song JS  Lee JY  In DS  Chung HJ  Liu JR  Choi DW 《Phytochemistry》2004,65(20):2751-2761
To develop an experimental system for studying ginsenoside biosynthesis, we generated thousands of ginseng (Panax ginseng C.A. Meyer) hairy roots, genetically transformed roots induced by Agrobacterium rhizogenes, and analyzed the ginsenosides in the samples. 27 putative ginsenosides were detected in ginseng hairy roots. Quantitative and qualitative variations in the seven major ginsenosides were profiled in 993 ginseng hairy root lines using LC/MS and HPLC-UV. Cluster analysis of metabolic profiling data enabled us to select hairy root lines, which varied significantly in ginsenoside production. We selected hairy root lines producing total ginsenoside contents 4-5 times higher than that of a common hairy root population, as well as lines that varied in the ratio of the protopanaxadiol to protopanaxatriol type ginsenoside. Some of the hairy root lines produce only a single ginsenoside in relatively high amounts. These metabolites represent the end product of gene expression, thus metabolic profiling can give a broad view of the biochemical status or biochemical phenotype of a hairy root line that can be directly linked to gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号