首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genus Borderea consists of two species, B. pyrenaica and B. chouardii, taxa which have been previously considered as conspecific due to their overall close morphology. These two sole species of the rare genus of Dioscoreaceae are endemic to the Pyrenees (Spain, France). This mountain range likely operated as a refugium for these plants during the last glaciations. B. chouardii is only known from a single population in the Spanish Prepyrenees and has been classified as at risk of extinction in the Red List of Endangered Species (IUCN); B. pyrenaica shows a narrow distribution range in the central Pyrenees and Prepyrenees. We analysed genetic variation, population structure and differentiation in these two taxa using RAPD markers. Our study was conducted on the same seven populations for which very low levels of genetic differentiation were detected previously through allozyme analysis. By contrast, high levels of genetic variability were detected through the RAPD hypervariable markers. Twelve RAPD primers produced 112 distinct bands in the 397 surveyed individuals, totalling 395 different RAPD phenotypes. Only four bands were monomorphic across all samples of Borderea, whereas 21 of the polymorphic bands were species‐specific (20 for B. chouardii, and one for B. pyrenaica). The largest genetic distances were those between the B. chouardii and the B. pyrenaica phenotypes. An analysis of molecular variance showed greater variance between groups (B. chouardii vs. B. pyrenaica, 76.08%) than within groups (3.60%). RAPD band specificity, phenotypic distances, and the partitioning of variance all support the taxonomic separation of the two species. Statistical evaluation of within‐ and among‐population RAPD genetic variability in B. pyrenaica showed that genetic variability was higher within populations (>80%) than among them. No clear pattern of RAPD differentiation could be observed among the six studied populations of this taxon though slight differences in genetic diversity could be observed in the more isolated Prepyrenean populations compared with the more widespread Pyrenean ones. These results suggest a recent postglacial origin of the present B. pyrenaica populations. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 483–498.  相似文献   

3.
Aim  Borderea pyrenaica (Dioscoreaceae) is a Tertiary relict plant endemic to the Central Pyrenees. Because of its narrow distribution in a small geographical area and the fact that it is restricted to high alpine habitats, it constitutes an ideal model species for inferring the historical dynamics of population survival and migration during and after Quaternary glaciations in the Pyrenees.
Location  Central Pyrenees and pre-Pyrenees, Spain–France.
Methods  Eleven primer pairs were used to amplify 18 microsatellite loci in this allotetraploid species in a sample of 804 individuals from 15 populations, revealing a total of 77 alleles. Genotypic data of individuals and populations were analysed using clustering and Bayesian methods of analysis of population structure.
Results  A higher number of private alleles and a significantly higher allelic richness ( A *) were found in the southern area (21, A * = 2.295) than in the northern area (5, A * = 1.791). Furthermore, the allelic composition of the northern area represented a subset of that from the southern area.
Main conclusions  The hypothesis of in situ survival in northern Pyrenean nunataks was rejected, while peripheral refugia were considered to be restricted to the southern Pyrenees and pre-Pyrenees, where historical geographical fragmentation probably caused the divergence among southern Pyrenean populations. Molecular evidence indicates that these refugial populations probably colonized the northern area after sheet-ice retreat. Borderea pyrenaica lineages followed two migratory pathways in their northward colonization, suggesting several founder events for the populations that eventually reached the territory of the Gavarnie cirque.  相似文献   

4.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

5.
Sex ratio and sexual dimorphism of Borderea pyrenaica, a long-lived dioecious geophyte endemic to the Pyrenees (north-east Iberian Peninsula), were examined in three alpine populations. In this species, age can be estimated and the sex of nonreproductive adult plants identified. Male plants attain sexual maturity earlier, flower more frequently and grow faster than female plants, whereas females allocate a higher biomass to reproduction than males. These results support the hypothesis that female plants incur a higher cost of sexual reproduction and that this higher cost is measurable as reduced vegetative growth and lower flowering frequency. Variation of sex ratio among young, intermediate and old adults within populations suggests, however, that this higher female reproductive investment does not result in sexual differences in mortality. The overall male-biased sex ratio in B. pyrenaica is mainly a consequence of the tendency of males to reproduce at an earlier age and more frequently than females.  相似文献   

6.
 Significant geographic partitioning of genetic variation within Cochlearia bavarica was found within populations from Allg?u and SE Bavaria (Germany) exhibiting significant genetic differentiation. It has been demonstrated that allohexaploid C. bavarica evolved via hybridization between diploid C. pyrenaica and tetraploid C. officinalis. Presently, only C. pyrenaica is distributed throughout inland Central Europe. It has been concluded that C. bavarica is of inter- or postglacial origin, and its speciation was not influenced by human activities. Isozyme analysis revealed that there is a correlation between interpopulational genetic distances and geographic distances among C. bavarica populations from both regions, and which is not the case for C. pyrenaica in Germany and Austria. Only high alpine C. excelsa is significantly differentiated among the diploid taxa analysed here. Geographically structured distribution of alleles and their frequencies in C. bavarica populations could not be explained with the distribution of these alleles in C. pyrenaica. The presented findings favour disruption of a former wider distribution area rather than migration of C. bavarica or a polytopic origin of this species. Received April 17, 2001 Accepted February 1, 2002  相似文献   

7.
Genetic variability within and among Bulinus truncatus of the Albertine Rift freshwater bodies were assessed to investigate the degree of inbreeding and gene flow in the snail populations. The effect of ploidy on the genetic structuring of B. truncatus is also described. We characterized the genetic structure of seven B. truncatus populations from Lake Albert, Lake Kivu, and Katosho swamp in Tanzania using five polymorphic microsatellite loci. Genetic differentiation was quantified using pairwise FST values and Nei’s standard genetic distances. Different alleles were observed across all loci and genetic diversity was low although it varied greatly across populations; observed heterozygosity was, however, higher than the expected heterozygosity in three of the populations studied. Significant heterozygote deficiencies were observed coupled with significant linkage disequilibria in five populations for all the five loci examined in this study. We found significant genetic differentiation among the seven freshwater bodies; private alleles were observed across all loci indicating restricted or absence of gene flow between populations. Limited snail dispersal and the reproductive biology of B. truncatus are the major forces shaping the genetic variation observed. Low genetic variation within B. truncatus populations exposes them to a high parasite infection risk as predicted in the Red Queen hypothesis.  相似文献   

8.
Landraces in situ Conservation: A Case Study in High-Mountain Home Gardens in Vall Fosca, Catalan Pyrenees, Iberian Peninsula. Interest in landrace conservation has grown over the last few decades with much research focusing on the maintenance of on-farm crop genetic diversity in the tropics. Research on landraces is less abundant in temperate climates. In this paper we assess landrace conservation status in home gardens in Vall Fosca (Catalan Pyrenees, Iberian Peninsula). We estimate the individual socio-demographic attributes associated with in situ conservation of landraces and explore the reasons for their conservation. Fieldwork was conducted March–September 2008, during which time we surveyed 60 home gardens, owned by 53 tenders from 16 villages. We recorded occurrence, abundance, uses, and management of plants cultivated in home gardens. We also inquired about the informants’ reasons for conserving landraces. We found 148 different species. We identified 39 landraces corresponding to 31 species. Women, people over 65 years of age, experienced gardeners, and people who grow their home garden organically were more likely to conserve landraces than people without those characteristics. Although the informants express a strong preference for landraces, they mainly grow commercial varieties. Landraces seem to be displaced by less labor-intensive commercial varieties.  相似文献   

9.
Temporal changes in allele frequencies are often assumed in studies addressing the history of populations affected by different anthropogenic and natural impacts at different time scales. Yet, few studies directly compare the genetic composition of populations over time spans of more than 10 years. Therefore, to test the genetic effects of 15 years of population isolation in the butterfly Lycaena helle, we analysed 472 individuals from 27 samples, of which nine were collected in 1991 and 18 in 2006. Sampling was performed in five mountain regions (Pyrenees, Massif Central, Jura, Vosges and Ardennes). Genetic analyses were performed using five polymorphic microsatellites. Old and new samples of identical or neighbouring populations revealed similar genetic differentiations among these five mountain regions. A comparatively strong genetic differentiation among populations combined with a high amount of private alleles for each mountain area was detected, but mountain‐specific alleles were in most cases identical in 1991 and 2006. Nevertheless, the obtained data also indicate moderate changes between 1991 and 2006 in the species’ genetic structure – genetic differentiation among local populations increased marginally and allele frequencies showed corresponding modifications. A significant decline in genetic diversity was not detectable, and nine private alleles exclusive to a single mountain region were only detected in samples from the year 1991, whereas eleven were only observed in the individuals collected in 2006. These observations might indicate the results of genetic drift within isolated populations.  相似文献   

10.
European grayling populations in Bavaria have shown steady declines during the last 10–20years. In order to provide guidelines for conservation strategies and future management programs, we investigated the genetic structure of 15 grayling populations originating from three major Central European drainages (the Danube, the Elbe and the Rhine/Main) using 20 microsatellite loci. Genetic divergence between the three drainage systems was substantial as illustrated by highly significant heterogeneity of genotype frequencies, high number of drainage-specific private alleles, high between-drainage F ST values, high assignment success of individuals to their drainage of origin and the high bootstrap support for the genetic distance based drainage-specific population clusters. In agreement with earlier studies, microsatellites revealed relatively low levels of intrapopulational genetic diversity in comparison to the overall level of variation across populations. Maximum likelihood methods using the coalescent approach revealed that the proportion of common ancestors was generally high in native populations and that the estimates of N e were correlated with the genetic diversity parameters in all drainages. The number of effective immigrants per generation (N e m) was less than one for all pairwise comparisons of populations within the drainages, indicating restricted interpopulational gene flow. Based on these findings we recommend a drainage and sub-drainage specific conservation of grayling populations in order to preserve their overall genetic diversity and integrity. For large-scale stocking actions to supplement declining or to restore extinct populations, creation of separate broodstocks for major conservation units (ESUs and MUs) is warranted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Conservation geneticists make inferences about their focal species from genetic data, and then use these inferences to inform conservation decisions. Since different biological processes can produce similar patterns of genetic diversity, we advocate an approach to data analysis that considers the full range of evolutionary forces and attempts to evaluate their relative contributions in an objective manner. Here we collect data from microsatellites and chloroplast loci and use these data to explore models of historical demography in the carnivorous Pitcher Plant, Sarracenia alata. Findings indicate that populations of S. alata exhibit high degrees of population genetic structure, likely caused by dispersal limitation, and that population sizes have decreased in western populations and increased in eastern populations. These results provide new insight to the management and conservation of plants restricted to small, declining populations isolated in increasingly scarce and highly threatened habitat, including other rare and endangered species of Sarracenia.  相似文献   

12.
Large herbivore populations can suffer important oscillations with considerable effects on ecosystem functions and services, yet our capacity to predict population fate is limited and conditional upon the availability of data. This study investigated the interannual variation in the growth rate of populations ofCapra pyrenaica Schinz, 1838, and its extinction risk by comparing the dynamics of populations that were stable for more than two decades (Gredos and Tortosa-Beceite), populations that had increased recently (Tejeda-Almijara), and populations that were in decline (Cazorla-Segura) or extinct (the Pyrenees population; hereafter, bucardo). To estimate quasi-extinction threshold assessments (50% of population extinct in this study), which have implications for the conservation of the species, we used empirical data and the predictions derived from several theoretical models. The results indicate that when variance of log population growth rate reaches a specific threshold, the probability of quasi-extinction increased drastically. ForC. pyrenaica, we recommend keeping population variance < 0.05, which will reduce the likelihood that the irruptive oscillations caused by environmental and demographic stochasticity will put the population at risk. Models to predict the dynamics ofC. pyrenaica populations should incorporate temporal stochasticity because, in this study, it strongly increased the likelihood that a population declined.  相似文献   

13.
We isolated 11 polymorphic microsatellites from blue coral (Heliopora coerulea), whose conservation and management are of great concern. The number of alleles ranged from 3 to 20 with an average of 5.5, and the observed and expected heterozygosities ranged from 0.115 to 0.833 and from 0.371 to 0.915, respectively. These loci are useful for conservation genetics in H. coerulea populations.  相似文献   

14.
Several methods based on population biology, biogeography, ecology, and genetics have been traditionally used for the identification of units for conservation below the species level. We use a combination of two methods based on population genetic structure estimators and on probabilities of loss of rare alleles to identify the Relevant Genetic Units for Conservation (RGUCs). The aims were to assess the genetic diversity and population structure of the endemic steppe plant Boleum asperum (Brassicaceae), and to determine how many and which populations significantly represent the total genetic diversity and the rarest allelic variation. Despite the high amplified fragment length polymorphism genetic diversity values detected in B. asperum ( h T = 0.744), caused probably by its hexaploidy and allogamy, moderate spatial genetic differentiation was detected among populations (< 20%) and geographical ranges (> 13%), suggesting the existence of an ancestral continuous distribution range that was fragmented into separate 'islands' in more recent historical times. Five RGUCs, accounting for the 85.10% of the total genetic variation and representative of the entire geographical distribution of the species, were selected for in situ conservation. Ex situ conservation is proposed to complement the preservation of B. asperum . This method of objective selection of populations may be applied to other candidate taxa for conservation with prior adjustment of the threshold values of diversity required for effective protection of each particular species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 341–354.  相似文献   

15.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

16.
The razor clam (Sinonovacula constricta) is an important aquacultured bivalve in China. The natural populations of this species are decreasing quickly. To facilitate studies on genetic diversity and population structure of wild populations, microsatellites were isolated from a CA enriched genomic library. Eight microsatellite loci were polymorphic in 30 individuals from Chongming in Shanghai, China. The number of alleles per polymorphic locus varied from 6 to 13 and the values of observed heterozygosity and expected heterozygosity ranged from 0.350 to 1.000 and from 0.602 to 0.902, respectively. These microsatellites are being used in studying population differentiation and genetic diversity for effective conservation and management genetic resources of S. constricta.  相似文献   

17.
《Systematic Entomology》2018,43(1):200-217
Cold‐adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high‐latitude and high‐altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter‐refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter‐refugia differentiation and potential speciation among populations of one of the most common arcto‐alpine bumblebee species in European mountains, Bombus monticola Smith, 1849. Based on mitochondrial DNA/nuclear DNA markers and eco‐chemical traits, we performed integrative taxonomic analysis to evaluate alternative species delimitation hypotheses and to assess geographical differentiation between interglacial refugia and speciation in arcto‐alpine species. Our results show that trait differentiations occurred between most Southern European mountains (i.e. Alps, Balkan, Pyrenees, and Apennines) and Arctic regions. We suggest that the monticola complex actually includes three species: B. konradini   stat.n. status distributed in Italy (Central Apennine mountains), B. monticola with five subspecies, including B. monticola mathildis   ssp.n. distributed in the North Apennine mountains ; and B. lapponicus . Our results support the hypothesis that post‐Ice Age periods can lead to speciation in cold‐adapted species through distribution range contraction. We underline the importance of an integrative taxonomic approach for rigorous species delimitation, and for evolutionary study and conservation of taxonomically challenging taxa.  相似文献   

18.
The Cantabrian capercaillie (Tetrao urogallus cantabricus) occupies the southwestern edge of the grouse family distribution range in Eurasia. It is endemic to the Cantabrian Mountains in northwestern Spain and is geographically isolated and separated from the neighboring population in the Pyrenees by a distance of 300 km. Over the last decades, the population has undergone a dramatic decline and is now threatened with extinction. This study presents the genetic analysis of the Cantabrian capercaillie population using non-invasive samples. We performed genotyping of 45 individuals using 20 microsatellites and a sex marker. The data highlight the need for using a large number of markers when considering fragmented small populations. Genetic diversity (HE = 0.50) and average number of alleles (3.40) in the population were low. The population is fragmented into 2 clusters (FST = 0.113) that fit with areas on both sides of the transportation ways that divide its range. Both clusters exhibited additional heterozygote deficits. Geographical distance was negatively correlated with genetic relatedness (r = −0.44, P ≤ 0.001). The data show a recent decline in effective population size that can be related to an ongoing process of population reduction and fragmentation. Conservation actions should focus on the protection of local demes by maintaining a dense network of suitable patches to maximize reproductive output and the number of potential dispersers to reconnect the 2 subpopulations. © 2012 The Wildlife Society.  相似文献   

19.
Aim The phylogeography of ‘southern’ species is relatively well studied in Europe. However, there are few data about ‘northern’ species, and so we studied the population genetic structure of the arctic‐alpine distributed burnet moth Zygaena exulans as an exemplar. Location and methods The allozymes of 209 individuals from seven populations (two from the Pyrenees, five from the Alps) were studied by electrophoresis. Results All 15 analysed loci were polymorphic. The mean genetic diversities were moderately high (A: 1.99; He: 11.5; P: 65%). Mean genetic diversities were significantly higher in the Alps than in the Pyrenees in all cases. FST was 5.4% and FIS was 10%. Genetic distances were generally low with a mean of 0.022 between large populations. About 62% of the variance between populations was between the Alps and the Pyrenees. The two samples from the Pyrenees had no significant differentiation, whereas significant differentiation was detected between the populations from the Alps (FST = 2.8%, P = 0.02). Main conclusion Zygaena exulans had a continuous distribution between the Alps and the Pyrenees during the last ice age. Most probably, the species was not present in Iberia, and the samples from the Pyrenees are derived from the southern edge of the glacial distribution area and thus became genetically impoverished. Post‐glacial isolation in Alps and Pyrenees has resulted in a weak genetic differentiation between these two disjunct high mountain systems.  相似文献   

20.
The importance of ants for pollination in the dioeciousBorderea pyrenaica (Dioscoreaceae), a Tertiary palaeoendemic plant of the Pyrenees (NE Iberian Peninsula) was studied. The frequency of different visitors (ants, lady beetles, andDiptera) to staminate and pistillate flowers was quantified, and their effectiveness as pollinators was examined by means of fruit and seed set in selective experimental exclusions. Although ants were less abundant on flowers than other visitors, they were the most effective pollinators. Some qualitative factors of this mutualistic ant-plant interaction may account for their effectiveness: the small size of the ants, their high visitation rate to pistillate flowers, and the lack of reduction in viability of the pollen transported on the integument. In addition, the sedentary nature of ants assures their presence during the flowering period. The most abundant floral visitors ofB. pyrenaica were therefore not the most effective pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号