首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macroinvertebrate community in the lower Ebro river (NE Spain)   总被引:1,自引:1,他引:0  
We examine the macroinvertebrate community composition and dynamics in the last 60 km of the Ebro river (NE Spain). Different sampling methods (individual stones, Surber, kick samplers and artificial substrate) were used depending on the characteristics of the sites chosen (substrate, current velocity, saline influence).The high nutrient content and the abundance of UFPOM is the origin of a high density in stones although no clear pattern exists between stone surface area and density or species richness. The high spatial heterogeneity and moderate disturbance intensity and frequency because of river regulation explains the relatively rich macroinvertebrate community and the low temporal changes in the community.  相似文献   

2.
Kelp are important primary producers that are colonized by diverse microbes that can have both positive and negative effects on their hosts. The kelp microbiome could support the burgeoning kelp cultivation sector by improving host growth, stress tolerance, and resistance to disease. Fundamental questions about the cultivated kelp microbiome still need to be addressed before microbiome-based approaches can be developed. A critical knowledge gap is how cultivated kelp microbiomes change as hosts grow, particularly following outplanting to sites that vary in abiotic conditions and microbial source pools. In this study we assessed if microbes that colonize kelp in the nursery stage persist after outplanting. We characterized microbiome succession over time on two species of kelp, Alaria marginata and Saccharina latissima, outplanted to open ocean cultivation sites in multiple geographic locations. We tested for host-species specificity of the microbiome and the effect of different abiotic conditions and microbial source pools on kelp microbiome stability during the cultivation process. We found the microbiome of kelp in the nursery is distinct from that of outplanted kelp. Few bacteria persisted on kelp following outplanting. Instead, we identified significant microbiome differences correlated with host species and microbial source pools at each cultivation site. Microbiome variation related to sampling month also indicates that seasonality in host and/or abiotic factors may influence temporal succession and microbiome turnover in cultivated kelps. This study provides a baseline understanding of microbiome dynamics during kelp cultivation and highlights research needs for applying microbiome manipulation to kelp cultivation.  相似文献   

3.
Phytoplankton distribution and abundance in eleven tributaries of the Colorado River within the Grand Canyon were investigated from April, 1975 to June, 1976. During this period a total of 56 genera and 156 species of phytoplankton was identified. Phytoplankton species of the individual tributaries were quite distinct, with only four diatom species, Diatoma vulgare, Navicula tripunctata, Nitzschia linearis and Synedra ulna, common to all the tributaries. Bright Angel Creek, Shinumo Creek and Elves Chasm were the tributaries with the most diverse algal flora, whereas Vaseys Paradise, Tapeats Creek, Deer Creek and Havasu Creek showed the lowest species richness. Elves Chasm and Diamond Creek had the highest phytoplankton numbers. Phytoplankton abundance and species richness appeared to be influenced by high turbidity, current velocity, fluctuating water levels and age of the water. Some of the dominant algal species, Biddulphia laevis, Cocconeis pediculus, Cymbella ventricosa, Epithemia sorex, Gomphonema parvulum and Synedra ulna, showed significant correlations with specific physico-chemical characteristics of the tributaries.Grand Canyon National Park Colorado River Research Series Contribution No. 66. This research was supported by the National Park Service, U. S. Department of the Interior.  相似文献   

4.
Abstract. 20 alluvial forest stands of different ages along the river Rhine in central Alsace, France, are described. A natural complex landscape occurs which is formed by erosion activity of the river. Recent human impact (canal construction, cutting) has affected river hydrology: flooding is eliminated over large areas and the underground water levels are stabilized. The forest vegetation varies in species diversity and structure, from young pioneer to older, mid-successional forests. The forests were classified into four associations: Salici-Populetum nigrae, Ligustro-Populetum nigrae, Fraxino-Populetum albae and Querco-Ulmetum minoris. The first three communities are ‘softwood’ because of the dominance of Salix and Populus, the fourth, dominated by Quercus robur, Fraxinus excelsior and Ulmus minor, is ‘hardwood’. Differences in structure, species composition and diversity in 10 widely varying stands in 30-yr and 150-yr old forests are quantified and interpreted in relation to the processes and gradients (moisture and texture) involved. A model of forest succession is developed as follows:
  • 1 Whatever the topographic level, Salix and Populus species are the most competitive in colonizing bare sediments.
  • 2 Under natural conditions, pioneer softwoods are generally replaced by hardwoods in less than 100 yr.
  • 3 Old Querco-Ulmetum is basically the terminal stage of the alluvial succession.
  • 4 Old softwood forests result from an interruption of the natural course of succession. Softwoods may be an intermediate or late-successional phase depending on the interruption.
  • 5 Successional processes change according to hydrological and edaphic gradients.
  • 6 Allogenic processes of flooding are fundamental in the space-time species pattern.
  • 7 Allogenic processes are responsible for the high species and community diversity.
  相似文献   

5.
Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.  相似文献   

6.
The phytoplankton of the Matanza-Riachuelo river (Buenos Aires, Argentina) was studied for a period of 15 months together with different physical and chemical variables, along an increasingly eutrophic in character downstream. 281 taxa were recorded within a seasonal succession, among these 49 percent were euglenophyta, 25 percent bacillariophyta, 15 percent chlorophyta and 10 percent cyanophyta. Multivariate procedures included cluster analyses and ordination by PCA of both species and samples, and stepwise multiple regression analyses were employed to assess the impact of the pollution on the phytoplankton. The effect of the alteration was different in each studied site. With one exception, the changes in the community structure described herein involved modifications of the basic species composition. According to the species present, it was deduced that the main pollutant was the high concentration of organic matter. Results of the Matanza-Riachuelo, Reconquista, and Luján Rivers studies are further discussed.  相似文献   

7.
Decomposition of aquatic macrophytes can considerably influence carbon cycling and energy flow in shallow freshwater aquatic ecosystems. The Atchafalaya River Basin (ARB) is a large floodplain river in southern Louisiana that experiences a seasonal floodpulse and is spatially composed of a mosaic of turbid riverine and stagnant backwater areas. During two seasons, winter and fall of 1995, we examined decomposition of four common aquatic macrophytes in the ARB: water hyacinth (Eichhornia crassipes), arrowhead (Sagittaria platyphylla), coontail (Ceratophyllum demersum) and hydrilla (Hydrilla verticillata). To determine decay rates, we used litter bags of two mesh sizes (5 mm and 0.25 mm) and analyzed data with a single exponential decay model. Analysis of decay rates established several trends for aquatic macrophyte decomposition in the ARB. First, macrophytes decayed faster in fall than winter due to the effect of increased temperature. Second, macroinvertebrates were the primary decomposers of macrophytes in riverine sites and microbes were the primary decomposers in backwater areas. These trends may have been related to decomposer-habitat interactions, with well-oxygenated riverine sites more hospitable to invertebrates and backwater areas more favorable to microbes because of high organic inputs and reduced flow. Decay rates for macrophytes, ranked from slowest to fastest, were E. crassipes<S. platyphylla<C. demersum<H. verticillata. Slower decomposition of E. crassipes was probably a result of microbial inhibition by the waxy-cutin outer layer and low nutritional value. The accelerated decomposition of C. demersum and H. verticillata was most likely a function of the large surface area of the highly dissected leaves. Macroinvertebrate numbers were twice as high in riverine sites compared to backwater sites. In the winter, amphipods Gammarus spp. and Hyallela azteca composed a large percentage of the total density on detritus. In the fall, Caenis sp. was prevalent in the backwater habitat and dipterans were abundant in the riverine site. We investigated the microbial component involved in the decomposition of E. crassipes and S. platyphylla and found that the highest microbial respiration rates occurred early in the winter at the backwater site. Bacterial density in the winter on E. crassipes and S. platyphylla averaged 1.4×106 cm-2 after two days and decreased to 2.0×105 cm-2 after 28 d. Our results emphasized the importance of the microbial community in the decomposition of macrophytes in the ARB, especially in backwater habitats and in the early stages of decay.  相似文献   

8.
In the terminal part of the Ebro river, bacterial production and mortality have been studied. Bacterial production was estimated by the thymidine incorporation method and from estimates of growth rate. Bacterial mortality and grazing were studied using differential filtration of a 3H-labelled population. Production was estimated as about 0.15 times 109 bacteria/l/h and total mortality was about 0.016/h. Grazing accounted for about 56% of the total mortality processes.  相似文献   

9.

The seasonal dynamics of river phytoplankton was analyzed using succession rate indices based on data collected from year-round observations of two small plain rivers in the Upper Ob Basin (Western Siberia). The study revealed a generally clear seasonal pattern of structural changes in the phytoplankton of the lower reaches of the studied rivers. The dynamics of succession rate indices reflects the key events in the life of phytoplankton in the Bolshaya Losikha and Barnaulka Rivers, showing mainly changes in the dominant species during the main phases of the hydrological cycle. The most significant changes in phytoplankton structure tend to occur in the period between the spring flood decline and the beginning of summer–autumn low water. These changes coincide with the most drastic changes in both environmental conditions and phytoplankton successional stages. Use of succession rate indices to analyze the seasonal dynamics of phytoplankton allowed us to distinguish between periods of abrupt change and periods of comparatively low-intensity changes in plankton composition in small lowland temperate rivers.

  相似文献   

10.
11.
Lagoons are dominant features along large stretches of the West Africa coast. These freshwater environments are very valuable areas where phytoplankton constitute the basis of aquatic food webs. In order to know the effects of environmental variables on phytoplankton, a study of the successional pattern of phytoplankton in Lekki lagoon was carried out monthly for two years (June 2003-May 2005). Phytoplankton samples were collected from 12 stations using a plankton net of 55 microm mesh, and samples preserved in 4% unbuffered formalin. Besides, surface water samples were taken for physico-chemical analysis. For each year, the seasonal distribution and succession of dominant phytoplankton followed different patterns. Phytoplankton abundance was higher during the dry season (November-April) for the two annual cycles. The diatoms (Aulacoseira granulata and A. granulata var angustissima) and blue green algaes, Microcystis aeruginosa, Merismopedia tennuissima and Trichodesmium lacustre showed this trend by being the abundant species in some of these months. For the rainy season, the green alga Mougeotia sp. dominated. The replacement of one form by another throughout seasonal cycles was probably controlled by the changes in environmental variables such as rainfall, nitrate-nitrogen and phosphate-phosphorus.  相似文献   

12.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

13.
We tested the hypothesis that species composition and persistence of phytoplankton communities in nutrient rich lowland rivers depends mainly on physical factors. The study aimed to analyse the effects of water discharge, temperature and chemistry on phytoplankton dynamic and species composition in the lowland reach of the eutrophic Po river (Italy). Both taxonomical and morpho-functional methods were used. True planktonic and tychoplanktic (i.e. detached taxa of benthic origin that remain in suspension) species were found, among which only a few taxa and functional groups prevailed. Diatoms were the most abundant, with a clear dominance of species either sensitive to the onset of water stratification or well adapted to turbid waters. Phytoplankton abundance, biomass and chlorophyll-a followed similar trends, attaining the highest values in summer, at low discharge rates. Correlation and multivariate analysis revealed that the development of a stable phytoplankton community was mainly controlled by water discharge rates. Namely, changes in water flow rates induced major variations in the community structure. The seasonal succession of phytoplankton assemblages was also related to water temperature and dissolved reactive silica availability to some extent overlapping flow effects.  相似文献   

14.
The factors influencing the abundance of phytoplankton in the Yellowknife River, in the Canadian subarctic, were determined from collections made for 42 consecutive months from June 1975 to November 1978. The spring bloom of plankton occured during April of each year in response to changing light conditions. WhileChlamydomonas lapponica was dominant during this period, it was replaced during the early part of the summer by a rapid succession ofDinobryon species in whichD. cylindricum was followed byD. sociale and in turn byD. bavaricum andD. divergens. Although low nutrient levels permitted the development ofDinobryon during the summer, the abundance of diatoms was greatly limited by the concentrations of SiO2 (< 0.1 g/m3). Algal densities began to decline in August and reached low overwintering levels by November. The absence of a fall bloom in densities was due to a combination of low temperatures and nutrient levels.P.O. Box 2310, Yellowknife, Northwest Territories, X1A 2P7, Canada  相似文献   

15.
The spatial and temporal distribution of element concentrations were monitored together with chlorophyll a as an indicator of algal density to assess the effect of phytoplankton on the elemental composition (C, N, P) of suspended materials in the lower Rhine. The high concentrations of particulate C, N and P in the river were found to decrease in the delta and to increase again in the estuarine turbidity zone. Phytoplankton blooms increased the concentrations of particulate C, N, and P significantly in the upstream part of the river. In summer 1989, 15–65% of the particulate C and 20–75% of the particulate N were attributable to phytoplankton. Together with published data these observations indicate that in eutrophic rivers, the input of organic materials from the catchment is strongly modified and supplemented by in situ growth of phytoplankton. During seaward transport the phytoplankton and the particulate elements disappeared from the river water concomitantly with the suspended matter, indicating an increased retention of these elements due to sedimentation. In contrast, soluble ammonia, nitrite and phosphate increased in the tidal reaches of the river because of local input in the harbour and city of Rotterdam and because of mineralization. Therefore the total nutrient load of the Rhine estimated at the German/Dutch border does not reflect the actual input into the sea.  相似文献   

16.
The contribution of nanoplankton (< 10 µm fraction)to winter – spring (1977 – 78) and summer (1978,1979) phytoplankton nitrogen dynamics in lower NarragansettBay was estimated from ammonium, nitrate and urea uptake ratesmeasured by 15N tracer methods. During the winter – spring,an average of 80% of chlorophyll a and nitrogen uptake was associatedwith phytoplankton retained by a 10 µm screen. In contrast,means of 51 – 58% of the summer chlorophyll a standingcrops and 64 – 70% of nitrogen uptake were associatedwith cells passing a 10 µm screen. Specific uptake ratesof winter – spring nanoplankton populations were consistentlylower than those of the total population. Specific uptake ratesof fractionated and unfractionated summer populations were notsignificantly different. Ammonium uptake averaged between 50and 67% of the total nitrogen uptake for both the total populationand the < 10µm fraction. The total population and the10 µm fraction displayed similar preferences for individualnitrogen species. Though composed of smaller cells, flagellatedominated nanoplankton assemblages may not necessarily takeup nitrogen at faster rates than diatom dominated assemblagesof larger phytoplankters in natural populations. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia  相似文献   

17.
An elementary,structural analysis of river phytoplankton   总被引:4,自引:3,他引:1  
Summary A structural analysis of river phytoplankton has been carried out based upon published studies on 67 rivers. When available on a yearly basis to account for seasonal variability, five structural features have been chosen: species composition, species richness, species dominance, diversity and biomass (total and per taxonomic groups). Despite the high number of reported studies, most of them cover only some of the aforementioned features. As a result of the low amount of studies, tropical rivers are underepresented. No size distribution studies have been carried out on river phytoplankton. The average species richness amounts to 126, being higher in temperate rivers. Roughly one half of each flora is comprised of sporadic species. No statistically significant relationship between species richness and latitude has been found despite the fact that tropical rivers appear to house fewer species than temperate rivers. Also, one half of the support in the floras are either benthic or tychoplanktonic. Diatoms comprise the majority of species numbers in the whole data set but are substituted by desmids in tropical rivers and by green algae when benthic species are not taken into account. There appears to be lower biomass in river phytoplankton than in lakes. Diatoms are also the major taxonomic group comprising total biomass in rivers but they share clearly a lower fraction in tropical rivers. On an average basis, diatoms appear to be more dominant in rivers than in lakes. The time course of diatom dominance occurs close to the summer solstice in tropical rivers whereas is much more lagged in temperate sites. The diversity of river phytoplankton is highly scattered (0.40–4.40 bits ind–1).  相似文献   

18.
Abstract

Viruses and virus-like particles (VLP) have been found, in most cases perchance, in about 20 marine phytoplankton species. However only in six of these have there been further investigations on this phenomenon. Different mechanisms of interaction have been hypothesized. These include continuous dynamic viral control on populations (Synechococcus spp.), at times suppressed by external environmental factors (Aureococcus anophagefferens), termination of a bloom caused by viral infection (Emiliania huxleyi and Micromonas pusilla) or by induction of lysogenic cells (Heterosigma akashiwo), and effects on the survivability of specific clones through genetic control (Aureococcus anophagefferens). These examples illustrate the complexity of virus-algae relationships and provide an indication that they may represent a key factor in the dynamics of phytoplankton blooms.  相似文献   

19.
The generalized results of long-term studies on plankton algae in the Taz Estuary are presented. A total of 399 taxa of species and subspecies rank represented by 327 species from 128 genera, 55 families, 25 orders, and 8 divisions have been revealed. The taxonomic and ecological-geographical structure of the algal flora of plankton is analyzed. The main peculiarities of the structural organization and spatial-temporal dynamics of the number and biomass of pelagic algocenoses are found.  相似文献   

20.
In this paper, we review some results obtained from three one-dimensional stochastic models, which were used to analyze picophytoplankton dynamics in two sites of the Mediterranean Sea. Firstly, we present a stochastic advection–reaction–diffusion model to describe the vertical spatial distribution of picoeukaryotes in a site of the Sicily Channel. The second model, which is an extended version of the first one, is used to obtain the vertical stationary profiles of two groups of picophytoplankton, i.e. Pelagophytes and Prochlorococcus, in the same marine site as in the previous case. Here, we include intraspecific competition of picophytoplanktonic groups for limiting factors, i.e. light intensity and nutrient concentration. Finally, we analyze the spatio-temporal behaviour of five picophytoplankton populations in a site of the Tyrrhenian Sea by using a reaction–diffusion–taxis model. The study is performed, taking into account the seasonal changes of environmental variables, obtained starting from experimental findings. The multiplicative noise source, present in all three models, mimics the random fluctuations of temperature and velocity field. The vertical profiles of chlorophyll concentration obtained from the stochastic models show a good agreement with experimental data sampled in the two marine sites considered. The results could be useful to devise a new class of models based on a stochastic approach and able to predict future changes in biomass primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号