共查询到20条相似文献,搜索用时 78 毫秒
1.
通过测定上海市青浦区东风港百慕大、白花三叶草、高羊茅和白茅等4种典型滨岸草本植物各组织以及不同垂直深度土壤有机质δ13C值,对滨岸草地生态系统的植物-土壤碳稳定同位素特征进行了分析.结果表明: 白花三叶草、高羊茅属于C3植物,百慕大、白茅属于C4植物,其茎叶、凋落物和根系各组织间δ13C值无显著差异.C3和C4植物样带表层土壤有机质δ13C值随着土壤深度递增而呈现截然不同的变化特征,这与样带本底δ13C值以及碳稳定同位素分馏效应有关,同时还受植物根系分布深度的影响.植物输入是土壤有机碳(SOC)的最主要来源,植物有机体δ13C组成对土壤有机质δ13C值有直接影响,植物各组分δ13C值与土壤有机质δ13C值均存在极显著相关.4种草本植物样带SOC含量与δ13C值均呈极显著相关,其中,C3植物样带SOC含量与δ13C值呈线性负相关,C4植物样带SOC含量与δ13C值呈线性正相关. 相似文献
2.
喀斯特石漠化已成为制约我国西南地区社会经济可持续发展最严重的生态地质环境问题,其恢复重建已成为我国社会经济建设中一项重要内容。土壤有机碳作为土壤质量评价的重要指标,可以综合反映土地生产力、环境健康功能,另一方面土壤有机碳也间接影响了陆地生物碳库,是陆地生态系统碳平衡的主要因子,它的转化和积累变化直接影响全球碳循环动态,已成为生态科学领域研究的热点之一。系统的总结了西南喀斯特石漠化地区不同土地覆被/土地利用、不同等级石漠化环境土壤有机碳的空间和季节分布特征。结合前人研究成果,进一步分析了影响喀斯特石漠化地区土壤有机碳分布的自然(气候、地形与土壤性质、植被等)和人为(土地覆被/土地利用变化、农业管理措施等)各因素,并提出增加喀斯特石漠化地区土壤有机碳含量的对策。研究结果为喀斯特石漠化退化生态系统恢复重建、石漠化地区土壤综合利用、增加碳截存应对全球碳循环减源增汇等提供了重要的科学参考。 相似文献
3.
选取中国西南3个典型喀斯特石漠化生态系统(贵州毕节鸭池高原山地石漠化区、贵阳红枫湖高原盆地石漠化区和关岭花江高原峡谷石漠化区)为研究区,广泛建立野外样地,开展石漠化生态系统土壤有机碳分布及其与石漠化等级、地形地貌、植被、土壤性质等环境因子的相关性研究。结果表明:1)喀斯特石漠化生态系统土壤有机碳含量较低,毕节鸭池、贵阳红枫湖和关岭花江3个石漠化生态系统平均值分别为23.42、25.78、26.03 g/kg,且3个不同地貌类型石漠化土壤有机碳含量无明显差异。2)土地覆被变化明显影响了土壤有机碳含量,原生森林土壤有机碳平均含量31.32 g/kg,是所有类型中最高的。随着土地覆被由原生森林至石旮旯地退化不断增加的过程,土壤有机碳含量显示先降低后增加的变化趋势。3)土壤有机碳与土壤特性有明显的相关性,与土壤总氮、水解氮、速效钾、总孔隙度、自然含水量、毛管持水量、田间持水量和上层渗透性存在极显著地正相关,与总磷、下层渗透性存在显著地正相关,与容重存在极显著地负相关。4)植物多样性的丰富度指数(R)和多样性指数(H)与土壤有机碳含量有明显的相关性,达到了极显著的水平。5)不同石漠化等级土壤有机碳含量有显著差异,随着石漠化干扰程度的递增,土壤有机碳含量显示了先减小后增加的趋势。研究结果对中国西南喀斯特森林生态保护、石漠化生态系统恢复重建以及应对全球气候变化碳循环的减源增汇具有重要的理论意义和实践指导价值。 相似文献
4.
贵州喀斯特石漠化过程中的土壤有机碳与容重关系 总被引:5,自引:0,他引:5
测定了不同石漠化等级的西南喀斯特生态系统的土壤容重和土壤有机碳.结果表明:西南喀斯特生态系统的土壤容重为0.91~1.37 kg cm-3,土壤有机碳含量变化较大,为8.1~58.9 g kg-1.在0~40 cm的土层中,没有发生石漠化的生态系统的有机碳储量达16.91 kg m-2,伴随着石漠化程度的加剧,土壤有机... 相似文献
5.
贵州喀斯特山区土地利用对土壤有机碳及其周转速率的影响 总被引:3,自引:0,他引:3
以贵州西南部典型石漠化治理示范区的灌丛、水田、旱地、退耕3年草丛和退耕15年草丛为研究对象,分析了不同层次(0~10、10~20和20~30 cm)土壤有机碳含量及其矿化速率,探讨了喀斯特山区土地利用对土壤有机碳周转速率的影响。结果表明:5种土地利用类型土壤有机碳平均含量分别为30.37、31.24、21.86、17.49和22.50 g·kg-1,灌丛和水田的土壤有机碳含量均显著高于旱地、退耕3年草丛和退耕15年草丛(P0.05);土壤有机碳的矿化规律表现为培养前期矿化速度快,培养中后期逐渐变缓。不同土地利用类型土壤有机碳的矿化速度存在差异,退耕3年草丛和退耕15年草丛的矿化速度较快,旱地的矿化速度快于水田;0~10和10~20 cm土层,灌丛土壤有机碳半衰期最长,分别为722和639d,水田土壤有机碳含量及半衰期在各层次均高于旱地及其退耕草地,表明水田可以作为喀斯特山区长期固碳的优势土地利用类型。总之,土地利用,特别是退耕,是影响喀斯特地区土壤有机碳周转速率的重要因素。 相似文献
6.
利用网格采样(10 m×10 m),对比分析了典型喀斯特坡耕地(长期耕作)和退耕地(自然恢复)表层(0—15 cm)土壤有机碳(SOC)的空间变异特征,以期探究退耕恢复20a后SOC的空间异质性及其主要影响因素的变化。结果表明退耕地SOC含量(75.5 g/kg)显著高于坡耕地(15.1 g/kg),为坡耕地的5.0倍,说明自然恢复能显著提高SOC累积量;半变异函数分析结果表明退耕地基台值(521.7)为坡耕地(25.7)的14.9倍,说明退耕地SOC空间异质性远大于坡耕地。坡耕地和退耕地SOC的主要影响因子存在较大差异,土地覆盖类型、坡位、岩石出露率以及三者的交互作用显著控制着坡耕地SOC的空间格局,其贡献率分别为9.1%、6.3%、4.6%以及17.0%;土壤水分、坡度、岩石出露率以及三者的交互作用显著控制退耕地SOC的空间格局,其贡献率分别为26.0%、10.7%、7.2%以及3.6%;尽管岩石出露率对坡耕地和退耕地SOC的空间格局均有显著影响,但坡耕地SOC的主要控制因子为土地覆盖类型以及各因子的交互作用,而退耕地的主要控制因子为土壤水分。以上研究表明随着植被恢复和物种多样性增加,喀斯特坡地SOC的累积量和空间异质性增强,自然因素对SOC空间格局影响凸显,而岩石出露率始终控制SOC空间格局。 相似文献
7.
以秦岭典型林分锐齿栎(马头滩林区)、油松、华山松、松栎混交林、云杉、锐齿栎(辛家山林区)为对象,研究了不同林分土壤剖面上有机碳、全氮、有机碳储量的分布规律。结果表明:在秦岭地区,随着土壤剖面深度增加,不同林分的土壤有机碳、全氮含量均逐渐降低;不同林分的土壤有机碳、氮素的积累和分解存在一定差异。其中,云杉和松栎混交林的土壤有机碳、全氮含量较高,锐齿栎(辛家山林区)含量较低,不同林分土壤剖面有机碳、全氮含量平均值分别为13.46—26.41 g/kg、4.47—9.51 g/kg,大小顺序均为云杉松栎混交林锐齿栎(马头滩林区)油松华山松锐齿栎(辛家山林区);各个林分的土壤C/N在5.93—15.47之间,C/N平均值大小为松栎混交林﹥华山松﹥油松﹥云杉﹥锐齿栎(辛家山林区)﹥锐齿栎(马头滩林区);各个林分0—60 cm土层的土壤有机碳储量大小为云杉锐齿栎(马头滩林区)松栎混交林华山松锐齿栎(辛家山林区)油松,分别为150.94、135.28、124.93、109.24、102.15、96.62 t/hm2;各个林分土壤有机碳含量与土壤全氮含量存在极显著正相关,土壤有机碳、全氮与C/N则没有明显相关性。 相似文献
8.
研究土壤有机碳垂直分布特征规律对精确测算土壤有机碳储量具有重要意义。通过野外调查实地挖取北京市平原区40个典型土壤剖面共169个样品数据,研究土壤有机碳垂直分布特征。结果表明:1)北京市平原区0—150 cm土壤平均有机碳含量为(5.98±2.62) g/kg,垂直分布上,随剖面深度增加土壤有机碳含量逐渐降低,且在浅层(≤60 cm)下降速度显著快于深层(60 cm); 2)各发生层次不同土壤质地的有机碳含量差异整体上均表现为粉粒及黏粒含量比例越高,即质地越黏重,土壤有机碳含量越高; 3)不同土体构型的平均土壤有机碳含量大小关系为通体砂通体壤上壤下黏夹黏,通体砂型土壤有机碳含量垂直变化相对平缓,上壤下黏型土壤有机碳含量在垂直方向呈\"降-升-降\"趋势,通体壤及夹黏型则均呈先快速下降后缓慢下降趋势; 4)耕地和园地土壤平均有机碳含量高于荒草地,耕地在整个剖面中土壤有机碳含量均居于三种土地利用类型之首,耕地和园地的土壤有机碳含量在0—20 cm和40—60 cm之间下降速度高达40.10%和55.92%,剖面深度超过60 cm后下降速度显著放缓,受人类活动直接影响相对较少的荒草地在垂直方向上变化相对平缓。 相似文献
9.
准噶尔盆地南缘荒漠区土壤碳分布及其稳定同位素变化 总被引:3,自引:0,他引:3
以亚洲中部干旱区准噶尔盆地南缘荒漠区为研究区,根据荒漠距离绿洲的距离,分别在荒漠边缘、中部和腹地设置3条样带,并采集2 m深的土壤剖面样品,研究土壤有机碳(SOC)、无机碳(SIC)含量及其稳定碳同位素的分布,探讨土壤碳变化与距绿洲距离的关系.结果表明: SOC含量随剖面土层深度增加而减少.受距绿洲距离的影响,SOC含量表现为荒漠边缘>荒漠中部>荒漠腹地.荒漠边缘SOC的δ13C值范围为-21.92‰~-17.41‰,且随深度增加而递减;荒漠中部和荒漠腹地的δ13C值范围为-25.20‰~-19.30‰,且随深度增加先增后减,由此推断准噶尔盆地南缘荒漠中部和腹地地表植被以C3植物为主,而绿洲边缘经历了从C3植物为主到C4植物为主的演替过程.荒漠边缘SIC平均含量为38.98 g·kg-1,是荒漠腹地的6.01倍,表明0~2 m深度内大量SIC在荒漠边缘呈聚集趋势.SIC的δ13C值随深度增加先减后增,底层富集,主要受原生碳酸盐含量和剖面土壤CO2的影响. 相似文献
10.
植被恢复被认为是提升退化区域土壤有机碳(SOC)固持的有效措施。然而,喀斯特脆弱生态系统植被人工恢复和自然恢复模式下SOC不同组分变化特征、稳定性和固持能力的研究还较缺乏。以典型喀斯特峰丛洼地为研究区,以耕地为对照,以恢复15年的人工恢复(人工林)和自然恢复(耕地撂荒后植被自然演替为灌丛)为研究对象,分析不同植被恢复模式下SOC、颗粒态有机碳(POC)、矿质结合态有机碳(MOC)、易氧化态有机碳(ROC)、惰性碳指数(RI)和SOC相对固持能力(SCScapacity)变化特征。结果发现:(1)人工林和灌丛SOC、POC和ROC含量显著高于耕地,且灌丛POC和ROC含量显著高于人工林,MOC则在三者之间差异不显著;(2)与耕地相比,人工林和灌丛RI显著下降,但SCScapacity差异不显著。研究表明,桂西北喀斯特峰丛洼地植被恢复15年后主要提升土壤活性碳组分,且自然恢复比人工恢复更有利于于提升土壤活性碳组分;然而,耕地退耕后短期内土壤碳稳定性并未增加,强调植被恢复后避免再次毁林开荒对于维持土壤碳固持的必要性。 相似文献
11.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC. 相似文献
12.
C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils 总被引:1,自引:0,他引:1
The large difference in the degree of discrimination of stable carbon isotopes between C3 and C4 plants is widely exploited in global change and carbon cycle research, often with the assumption that carbon retains the carbon isotopic signature of its photosynthetic pathway during later stages of decomposition in soil and sediments. We applied long-term incubation experiments and natural 13 C-labelling of C3 and C4-derived soil organic carbon (SOC) collected from across major environmental gradients in Australia to elucidate a significant difference in the rate of decomposition of C3- and C4-derived SOC. We find that the active pool of SOC (ASOC) derived from C4 plants decomposes at over twice the rate of the total pool of ASOC. As a result, the proportion of C4 photosynthesis represented in the heterotrophic CO2 flux from soil must be over twice the proportional representation of C4-derived biomass in SOC. This observation has significant implications for much carbon cycle research that exploits the carbon isotopic difference in these two photosynthetic pathways. 相似文献
14.
Spatial and temporal distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve, South China 总被引:6,自引:0,他引:6
Qingqiang Chen Chengde Shen Yanmin Sun Shaolin Peng Weixi Yi Zhi’an Li Mantao Jiang 《Plant and Soil》2005,273(1-2):115-128
The spatial and temporal distribution of carbon isotopes (13C, 14C) in soil organic matter (SOM) were studied based on SOM content, SOM 14C and SOM 13C of thinly layered soil samples for six soil profiles with different elevations at the Dinghushan Biosphere Reserve (DHSBR), South China. The results indicate that variations of SOM 13C with depth of the soil profiles at different elevations are controlled by soil development, and correlate well with SOM composition in terms of SOM compartments with different turnover rates, and SOM turnover processes at the DHSBR. The effect of carbon isotope fractionation was obvious during transformation of organic matter (OM) from plant debris to SOM in topsoil and SOM turnover processes after the topsoil was buried, which resulted in great increments of OM 13C, respectively. Increments of SOM 13C of topsoil from 13C of plant debris were controlled by SOM turnover rates. Both topsoil SOM 13C and plant debris 13C increase with elevation, indicating regular changes in vegetation species and composition with elevation, which is consistent with the vertical distribution of vegetation at the DHSBR. The six soil profiles at different elevations had similar characteristics in variations of SOM 13C with depth, alterations of SOM contents with depth and that SOM 14C apparent ages increasing with depth, respectively. These are presumably attributed to the regular distribution of different SOM compartments with depth because of their regular turnover during soil development. Depth with the maximal SOM 13C value is different in mechanism and magnitude with penetrating depth of 14C produced by nuclear explosion into atmosphere from 1952 to 1962, and both indicate controls of topography and vegetation on the distribution of SOM carbon isotopes with depth. Elevation exerts indirect controls on the spatial and temporal distribution of SOM carbon isotopes of the studied mountainous soil profiles at the DHSBR. This study shows that mountainous soil profiles at different elevations and with distinctive aboveground vegetation are presumably ideal sites for studies on soil carbon dynamics in different climatic-vegetation zones. 相似文献
15.
庐山不同海拔森林土壤有机碳密度及分布特征 总被引:16,自引:0,他引:16
为阐明地处中亚热带北部的庐山森林土壤有机碳沿海拔梯度的分布特征,2010年7—8月,分别在庐山的南、北坡按200 m的高差选择6个和5个不同海拔采样点,分层(0~10、10~20、20~30、30~40和>40 cm)采集土样,测定土壤容重、有机碳含量及有机碳密度.结果表明:海拔和坡向显著影响森林土壤有机碳密度.在北坡,随海拔升高,土壤有机碳呈逐渐增加趋势,土壤有机碳含量与土壤容重和pH值呈显著负相关关系;在南坡则没有明显规律.随土层加深,土壤有机碳逐渐下降.北坡和南坡土壤有机碳密度分别为7.07~10.34 kg.m-2和6.03~12.89 kg.m-2.南坡土壤有机碳密度随海拔梯度和土层深度变化的变异性较大,原始植被的破坏和人工林的建立可能是影响土壤有机碳空间分布的重要因素之一. 相似文献
16.
土体呼吸输出碳来源于土壤固有有机碳和外源添加碳,而以往关于不同施肥措施对水稻土碳排放的研究少有区分碳的来源。本试验利用一个长达30年的水稻土定位试验,在保证原有定位试验继续正常开展的前提下变更部分施肥处理,得到继续施用高量有机肥(HOM)、施用常量有机肥30年后改施高量有机肥(N-H)、继续施用常量有机肥(NOM)、施用化肥30年后改施常量有机肥(C-N)、施用高量有机肥30年后改施化肥(H-C)、施用常量有机肥30年后改施化肥(N-C)、继续施用化肥(CF)等7种施肥处理。通过观测早稻生长期间原有施肥和改施肥处理土体CO2排放通量(FCO2),研究不同后续施肥对水稻土FCO2的影响,以期探讨土壤原始有机碳和外源添加碳对土壤FCO2的影响。结果表明:7种不同施肥处理土体CO2平均排放通量(F珔CO2)分别为85.34、69.10、51.27、49.15、14.89、12.92和11.59 mg C.m-2.h-1;对施用无机肥料和常量有机肥料的土体而言,土壤本身有机碳含量对F珔CO2无显著影响,但对施用高量有机肥的土体而言,土壤本身的高有机碳含量会增强F珔CO2;CO2排放通量(Y)与添加外源碳量(x)之间符合指数方程:Y=13.33e1.719 x(R2=0.967,n=21),施入的外源有机碳对土体FCO2产生极显著影响;当季外源添加碳以CO2-C矿化分解释放的碳占其总碳量的14%左右,且该分解率受土壤有机碳含量和有机物料添加量的影响较小。 相似文献
17.
广西典型喀斯特地区深层土壤有机碳矿化及其影响因素 总被引:1,自引:0,他引:1
以广西典型峰丛洼地草地和原生林深层土壤(70~100cm)为对象,利用微生物交叉接种培养试验,研究不同土地利用类型、土壤微生物群落和通气条件对深层土壤有机碳矿化的影响。在124d的培养期内,微生物接种改变了0~28d原生林和0~81d草地深层土壤有机碳矿化速率,而通气条件变化对这一过程没有明显影响。3因素方差分析结果显示,深层土壤有机碳累积矿化率受土地利用类型、微生物群落和通气条件的影响显著(P<0.01),且存在3因素间交互效应。研究结果对于深入认识喀斯特深层土壤有机碳稳定机制和评估碳储量及其周转具有重要意义。 相似文献
18.
Based on the data from China’s second national soil survey and field observations in northwest China, we estimated soil organic
carbon (SOC) storage in China and investigated its spatial and vertical distribution. China’s SOC storage in a depth of 1 meter
was estimated as 69.1 Pg (1015 g), with an average density of 7.8 kg m−2. About 48% of the storage was concentrated in the top 30 cm. The SOC density decreased from the southeast to the northwest,
and increased from arid to semi-humid zone in northern China and from tropical to cold-temperate zone in the eastern part
of the country. The vertical distribution of SOC differed in various climatic zones and biomes; SOC distributed deeper in
arid climate and water-limited biomes than in humid climate. An analysis of general linear model suggested that climate, vegetation,
and soil texture significantly influenced spatial pattern of SOC, explaining 78.2% of the total variance, and that climate
and vegetation interpreted 78.9% of the total variance in the vertical SOC distribution. 相似文献
19.
YUANHE YANG JINGYUN FANG YANHONG TANG† CHENGJUN JI CHENGYANG ZHENG JINSHENG HE BIAO ZHU‡ 《Global Change Biology》2008,14(7):1592-1599
The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001–2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m−2 . The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. 相似文献
20.
Losses of soil organic carbon under wind erosion in China 总被引:7,自引:0,他引:7
Hao Yan Shaoqiang Wang† Changyao Wang‡ Guoping Zhang Nilanchal Patel§ 《Global Change Biology》2005,11(5):828-840
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites. 相似文献