首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultraviolet circular dichroism of di-isopropylphophoryl-subtilisins Carlsberg and Novo (EC 3.4.21.14) has been examined as a function of pH. The CD of these enzymes below 260 nm is invariant over the pH interval 4 to 12, below or above which spectral changes occur suggesting a transition to a random coil form. Above pH 8 contributions due to the ionization of tyrosyl residues appear in the CD above 260 nm as bands shifted to longer wavelengths. Three independently titratable components, obtained by matrix rank analysis, account for the observed CD spectral changes above 260 nm of Dip-subtilisin Carlsberg in the pH interval 8 to 12. By contrast, two components were derived for the Novo enzyme. The identities of the matrix rank components were surmised from their apparent pKa values. One component of both subtilisin enzymes corresponds to the CD of the "buried" or irreversibly titratable tyrosyl residues of the enzyme. The other matrix rank components correspond to the CD of the "exposed" or freely ionizable tyrosyl residues. These residues are optically active only in the ionized state. Two types of "exposed" tyrosyl residues, arising because of differing sensitivity to the ionization of the "partially buried" or abnormally titrating tyrosyl residues, are evident in Dip-subtilisin Carlsberg. A pH-induced local conformational change in this enzyme is proposed to account for this behavior. The "partially buried" tyrosyl residues of both subtilisins appear to be devoid of optical activity in either the tyrosyl or tyrosylate form.  相似文献   

2.
pH-induced conformational changes in dengue virus (DENV) are critical to its ability to infect host cells. The envelope protein heterodimers that make up the viral envelope shift from a dimer to a trimer conformation at low-pH during membrane fusion. Previous studies have suggested that the ionization of histidine residues at low-pH is central to this pH-induced conformational change. We sought out to use molecular modeling with structure-based pKa prediction to provide a quantitative basis for the role of histidines in pH-induced conformational changes and identify which histidine residues were primarily responsible for this transition. We combined existing crystallographic and cryo-electron microscopy data to construct templates of the dimer and trimer conformations for the mature and immature virus. We then generated homology models for the four DENV serotypes and carried out structure-based pKa prediction using Rosetta. Our results showed that the pKa values of a subset of conserved histidines in DENV successfully capture the thermodynamics necessary to drive pH-induced conformational changes during fusion. Here, we identified the structural determinants underlying these pKa values and compare our findings with previous experimental results.  相似文献   

3.
A reduction in pH induces the release of iron from transferrin in a process that involves a conformational change in the protein from a closed to an open form. Experimental evidence suggests that there must be changes in the protonation states of certain, as yet not clearly identified, residues in the protein accompanying this conformational change. Such changes in protonation states of residues and the consequent changes in electrostatic interactions are assumed to play a large part in the mechanism of release of iron from transferrin. Using the x-ray crystal structures of human ferri- and apo-lactoferrin, we calculated the pKa values of the titratable residues in both the closed (iron-loaded) and open (iron-free) conformations with a continuum electrostatic model. With the knowledge of a residue's pKa value, its most probable protonation state at any specified pH may be determined. The preliminary results presented here are in good agreement with the experimental observation that the binding of ferric iron and the synergistic anion bicarbonate/carbonate results in the release of approximately three H+ ions. It is suggested that the release of these three H+ ions may be accounted for, in most part, by the deprotonation of the bicarbonate and residues Tyr-92, Lys-243, Lys-282, and Lys-285 together with the protonation of residues Asp-217 and Lys-277.  相似文献   

4.
The acid unfolding of staphylococcal nuclease (SNase) is very cooperative (Whitten and García-Moreno, Biochemistry 2000;39:14292-14304). As many as seven hydrogen ions (H+) are bound preferentially by the acid-unfolded state relative to the native (N) state in the pH range 3.2-3.9. To investigate the mechanism of acid unfolding, structure-based pKa calculations were performed with a variety of continuum electrostatic methods. The calculations reproduced successfully the H+ binding properties of the N state between pH 5 and 9, but they systematically overestimated the number of H+ bound upon acid unfolding. The calculated pKa values of all carboxylic residues in the N state were more depressed than they should be. The discrepancy between the observed and the calculated H+ uptake upon acid unfolding was not improved by using high protein dielectric constants, structures relaxed with molecular dynamics, or other empirical modifications implemented previously by others to maximize agreement between measured and calculated pKa values. This suggests an important role for conformational fluctuations of the backbone as important determinants of pKa values of carboxylic groups. Because no global or subglobal conformational changes have been observed previously for SNase under acidic conditions above the acid-unfolding region, these fluctuations must be local. The acid unfolding of SNase does not seem to involve the disruption of the N state by accruement of intramolecular repulsive interactions, nor the protonation of key ion paired carboxylic residues. It is more consistent with modest contributions from many H+ binding groups, with an important role for local conformational fluctuations in the coupling between H+ binding and the global structural transition.  相似文献   

5.
The ionization properties of the active-site residues in enzymes are of considerable interest in the study of the catalytic mechanisms of enzymes. Knowledge of these ionization constants (pKa values) often allows the researcher to identify the proton donor and the catalytic nucleophile in the reaction mechanism of the enzyme. Estimates of protein residue pKa values can be obtained by applying pKa calculation algorithms to protein X-ray structures. We show that pKa values accurate enough for identifying the proton donor in an enzyme active site can be calculated by considering in detail only the active-site residues and their immediate electrostatic interaction partners, thus allowing for a large decrease in calculation time. More specifically we omit the calculation of site-site interaction energies, and the calculation of desolvation and background interaction energies for a large number of pairs of titratable groups. The method presented here is well suited to be applied on a genomic scale, and can be implemented in most pKa calculation algorithms to give significant reductions in calculation time with little or no impact on the accuracy of the results. The work presented here has implications for the understanding of enzymes in general and for the design of novel biocatalysts.  相似文献   

6.
Alexov E 《Proteins》2004,56(3):572-584
The protein-inhibitor binding energies of enzymes are often pH dependent, and binding induces either proton uptake or proton release. The proton uptake/release and the binding energy for three complexes with available experimental data were numerically studied: pepstatin-cathepsin D, pepstatin-plasmepsin II and pepstatin-endothiapepsin. Very good agreement with the experimental data was achieved when conformational changes were taken into account. The role of the desolvation energy and the conformational changes was revealed by modeling the complex, the separated molecules in the complex conformation and the free molecules. It was shown that the conformational changes induced by the complex formation are as important for the proton transfer as the loss of solvation energy caused by the burial of interface residues. The residues responsible for the proton transfer were identified and their contribution to the proton uptake/release calculated. These residues were found to be scattered along the whole protein rather than being localized only at the active site. In the case of cathepsin D, these residues were found to be highly conserved among the cathepsin D sequences of other species. It was shown that conformation and ionization changes induced by the complex formation are critical for the correct calculation of the binding energy. Taking into account the electrostatics and the van der Waals (vdW) energies within the Boltzmann distribution of energies and allowing ionization and conformation changes to occur makes the calculated binding energy more realistic and closer to the experimental value. The interplay between electrostatic and vdW forces makes the pH dependence of the binding energy smoother, because the vdW force acts in reaction to the changes of the electrostatic energy. It was found that a small fraction of the ionizable groups remain uncharged in both the free and complexed molecules. The sequence and structural position of these groups aligns well within the three proteases, suggesting that these may have specific role.  相似文献   

7.
A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.  相似文献   

8.
D Bashford  M Karplus 《Biochemistry》1990,29(44):10219-10225
A macroscopic electrostatic model is used to calculate the pKa values of the titratable groups in lysozyme. The model makes use of detailed structural information and treats solvation self-energies and interactions arising from permanent partial charges and titratable charges. Both the tetragonal and triclinic crystal structures are analyzed. Half of the experimentally observed pKa shifts (11 out of 21) are well reproduced by calculations for both structures; this includes the unusually high pKa of Glu 35 in the active site. For more than half the pKa's (13 out of 21), there is a large difference (1-3.3 pK units) between the results from the two structures. Many of these correspond to the titrating groups for which the calculations are in error. Since for an ionic strength of 0.1 M the Debye screening between titratable groups leads to a very high effective dielectric constant (the average value for all pairs of titrating groups is approximately 900), near-neighbor interactions dominate the pKa perturbations. Thus, the pKa values are very sensitive to the details of the local protein conformation, and it is likely that side-chain mobility has an important role in determining the observed pKa shifts.  相似文献   

9.
The charge-induced conformational transition of poly(alpha-L-glutamic acid) (PLGA) is considered in this paper from the point of view of proton dissociation. Equations for the excess electrostatic Gibbs energy of dissociation (i.e., delta pKa) are derived as a function of the degree of ionization, alpha. These analytical equations are used to describe some experimental dissociation curves at different polymer and salt concentrations. The dependence of the calculated delta pKa with respect to the ionic strength for the two conformational states, alpha-helical and extended coil, respectively, is rather satisfactorily explained. Even more interesting are the predictions which are derived from this approach for the transition point, alpha tr which is found to be ionic-strength dependent, in full agreement with the experimental results.  相似文献   

10.
The experimental NMR data for the individual titratable groups in ribonuclease T1 presented in the preceding paper were analysed by means of a continuum dielectric model. The role of two factors, the alteration of hydrogen loci on the ionizable groups and the conformational flexibility, were analysed. It was suggested that the position of the titratable hydrogen is essential mainly for strongly interacting groups. For groups which are accessible to the solvent and whose ionization is not coupled with the ionization of neighbouring groups, this factor can be neglected. The influence of the conformational flexibility on the electrostatic interactions becomes apparent for the environment of K25. For some strongly interacting groups, non-sigmoidal ionization curves were calculated. On this basis the pH dependence of the NMR chemical shift of the 13Cepsilon2 resonance of H27, whose ionization is coupled with E82, was reproduced.  相似文献   

11.
The effect of pH on the circular dichroism spectra of phenylmethanesulfonyl-mesentericopeptidase (peptidyl peptide hydrolase, EC 3.4.21) was studied. The ellipticity of the bands below 250 nm, which reflects the backbone conformation of the protein molecule, remains almost unchanged in the pH range 6.2--10.4. However, below pH 6.2 and above pH 10.4 a conformational transition occurs. The pH-dependent changes above 250 nm were also studied. The titration of the CD band at 296 nm reflects the ionization of the "exposed" tyrosines, which phenolic groups are fully accessible to the solvent. An apparent pK of 9.9 is calculated from the titration curve. It is concluded that ionization of the tyrosyl residues with normal pK's is complete before conformational changes in the protein molecule occur.  相似文献   

12.
Beta-lactamases are responsible for resistance to penicillins and related beta-lactam compounds. Despite numerous studies, the identity of the general base involved in the acylation step is still unclear. It has been proposed, on the basis of a previous pKa calculation and analysis of structural data, that the unprotonated Lys73 in the active site could act as the general base. Using a continuum electrostatic model with an improved treatment of the multiple titration site problem, we calculated the pKa values of all titratable residues in the substrate-free TEM-1 and Bacillus licheniformis class A beta-lactamases. The pKa of Lys73 in both enzymes was computed to be above 10, in good agreement with recent experimental data on the TEM-1 beta-lactamase, but inconsistent with the proposal that Lys73 acts as the general base. Even when the closest titratable residue, Glu166, is mutated to a neutral residue, the predicted downward shift of the pKa of Lys73 shows that it is unlikely to act as a proton abstractor in either enzyme. These results support a mechanism in which the proton of the active Ser70 is transferred to the carboxylate group of Glu166.  相似文献   

13.
The side chains of Lys66, Asp66, and Glu66 in staphylococcal nuclease are fully buried and surrounded mainly by hydrophobic matter, except for internal water molecules associated with carboxylic oxygen atoms. These ionizable side chains titrate with pKa values of 5.7, 8.8, and 8.9, respectively. To reproduce these pKa values with continuum electrostatics calculations, we treated the protein with high dielectric constants. We have examined the structural origins of these high apparent dielectric constants by using NMR spectroscopy to characterize the structural response to the ionization of these internal side chains. Substitution of Val66 with Lys66 and Asp66 led to increased conformational fluctuations of the microenvironments surrounding these groups, even under pH conditions where Lys66 and Asp66 are neutral. When Lys66, Asp66, and Glu66 are charged, the proteins remain almost fully folded, but resonances for a few backbone amides adjacent to the internal ionizable residues are broadened. This suggests that the ionization of the internal groups promotes a local increase in dynamics on the intermediate timescale, consistent with either partial unfolding or increased backbone fluctuations of helix 1 near residue 66, or, less likely, with increased fluctuations of the charged side chains at position 66. These experiments confirm that the high apparent dielectric constants reported by internal Lys66, Asp66, and Glu66 reflect localized changes in conformational fluctuations without incurring detectable global structural reorganization. To improve structure-based pKa calculations in proteins, we will need to learn how to treat this coupling between ionization of internal groups and local changes in conformational fluctuations explicitly.  相似文献   

14.
Tear lipocalin (TL), a major component of human tears, shows pH-dependent endogenous ligand binding. The structural and conformational changes associated with ligand release in the pH range of 7.5-3.0 are monitored by circular dichroism spectroscopy and site-directed tryptophan fluorescence. In the transition from pH 7.5 to pH 5.5, the ligand affinity for 16-(9-anthroyloxy)palmitic acid (16AP) and 8-anilino-1-naphthalenesulfonic acid is reduced. At pH 4.0 these ligands no longer bind within the TL calyx. From pH 7.3 to pH 3.0, the residues on loops CD and EF, which overhang the calyx entrance, show reduced accessibility to acrylamide. In addition resonance energy transfer is enhanced between residues on the two loops; the distance between the loops narrows. These findings suggest that apposition of the loops at low pH excludes the ligand from the intracavitary binding site. The conformational changes observed in transition from pH 7.3 to pH 3.0 for loops CD and EF are quite different. The CD loop shows less population reshuffling than the EF loop with an acidic environment, probably because backbone motion is restrained by the adjacent disulfide bond. The Trp fluorescence wavelength maximum (lambda(max)) reflects internal electrostatic interactions for positions on loops CD and EF. The titration curves of lambda(max) for mutants on the EF loop fit the Hendersen-Hasselbalch equation for two apparent pK(a) values, while the CD loop positions fit satisfactorily with one pK(a) value. Midpoints of transition for the binding affinity of TL tryptophan mutants to 16AP occur at pH 5.5-6.1. Replacement of each amino acid on either loop by single tryptophan mutation does not disrupt the pH-dependent binding affinity to 16AP. Taken together the data suggest that pH-driven ligand release involves ionization changes in several titratable residues associated with CD and EF loop apposition and occlusion of the calyx.  相似文献   

15.
Amino acids in peptides and proteins display distinct preferences for alpha-helical, beta-strand, and other conformational states. Various physicochemical reasons for these preferences have been suggested: conformational entropy, steric factors, hydrophobic effect, and backbone electrostatics; however, the issue remains controversial. It has been proposed recently that the side-chain-dependent solvent screening of the local and non-local backbone electrostatic interactions primarily determines the preferences not only for the alpha-helical but also for all other main-chain conformational states. Side-chains modulate the electrostatic screening of backbone interactions by excluding the solvent from the vicinity of main-chain polar atoms. The deficiency of this electrostatic screening model of amino acid preferences is that the relationships between the main-chain electrostatics and the amino acid preferences have been demonstrated for a limited set of six non-polar amino acid types in proteins only. Here, these relationships are determined for all amino acid types in tripeptides, dekapeptides, and proteins. The solvation free energies of polar backbone atoms are approximated by the electrostatic contributions calculated by the finite difference Poisson-Boltzmann and the Langevin dipoles methods. The results show that the average solvation free energy of main-chain polar atoms depends strongly on backbone conformation, shape of side-chains, and exposure to solvent. The equilibrium between the low-energy beta-strand conformation of an amino acid (anti-parallel alignment of backbone dipole moments) and the high-energy alpha conformation (parallel alignment of backbone dipole moments) is strongly influenced by the solvation of backbone polar atoms. The free energy cost of reaching the alpha conformation is by approximately 1.5 kcal/mol smaller for residues with short side-chains than it is for the large beta-branched amino acid residues. This free energy difference is comparable to those obtained experimentally by mutation studies and is thus large enough to account for the distinct preferences of amino acid residues. The screening coefficients gamma(local)(r) and gamma(non-local)(r) correlate with the solvation effects for 19 amino acid types with the coefficients between 0.698 to 0.851, depending on the type of calculation and on the set of point atomic charges used. The screening coefficients gamma(local)(r) increase with the level of burial of amino acids in proteins, converging to 1.0 for the completely buried amino acid residues. The backbone solvation free energies of amino acid residues involved in strong hydrogen bonding (for example: in the middle of an alpha-helix) are small. The hydrogen bonded backbone is thus more hydrophobic than the peptide groups in random coil. The alpha-helix forming preference of alanine is attributed to the relatively small free energy cost of reaching the high-energy alpha-helix conformation. These results confirm that the side-chain-dependent solvent screening of the backbone electrostatic interactions is the dominant factor in determining amino acid conformational preferences.  相似文献   

16.
Conformational analysis of long spacers in PROSITE patterns   总被引:2,自引:0,他引:2  
To determine if variable sequences (spacers) between conserved positions in a sequence motif or pattern share a consensus structure, three-dimensional structures containing PROSITE patterns with spacers of fixed length greater than three residues were analyzed. Structural similarities of a given pattern were evaluated by computing the backbone phi, psi and side-chain chi1 dihedral order parameters. The exact bias information in analyzing the conformational variability of the patterns was taken into account by introducing a new parameter, the bias coefficient, which describes the number and distribution of residue types found at each position of a pattern in the structures. The results of the analyses show that backbone conformational heterogeneity at a given position in a sequence motif does not necessarily correlate with the residue-type variability at that position, and the long spacer region can adopt a well-defined backbone conformation, in addition to the conserved residues. Furthermore, a PROSITE pattern may be redefined to yield two or more "refined" regular expressions, each corresponding to a distinct backbone conformation. A way in which the observed structural consensus in a pattern may be employed to improve the accuracy of function prediction from sequence is suggested.  相似文献   

17.
Previous calculations of electrostatic interactions in the rhinovirus capsid have identified a subset of histidine residues, paired with lysine or arginine, that may be involved in pH-induced conformational changes related to viral uncoating. Further calculations with the finite difference method, accounting for the dielectric environment of the ionizable groups, suggest that charge burial in the crystal conformation will prevent protonation of these histidine residues in the pentamer-pentamer interface. Calculations with a modelled pentamer-pentamer interface in which three beta-strands are removed recover mildly acidic pKa values for the histidines. These results are discussed in the context of the structural interactions of these three beta-strands, which form a beta-sheet extension from the rest of the capsid, and with regard to the conformation of the homologous beta-sheet extension in poliovirus, which also possesses homologous histidine-lysine/arginine pairs. A model is developed in which the structural stability of the beta-sheet extension is related to the difference in acid stability of rhinovirus and poliovirus. It is suggested that, for poliovirus prior to cell receptor binding, the beta-sheet extension is stable at pH 3, the pentamer-pentamer interface histidines remain buried, and the virus is acid-stable. Cell receptor binding of poliovirus destabilizes the beta-sheet extension and the acid lability that is proposed to result could be involved in viral uncoating. For rhinovirus it is suggested that the observed conformational change in the absence of cell receptor binding involves a further acidic pH-activated process or conformational fluctuations that rearrange the beta-sheet extension and expose the pentamer-pentamer interface histidine residues to the acidic medium. Sequence analysis and electrostatics calculations reveal an aspartic acid in the beta-sheet extension that may have different pKa values in rhinovirus and poliovirus.  相似文献   

18.
Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural changes of ground-state, dark-adapted wild-type bacteriorhodopsin and its mutant (D96N) with aspartic acid-96 replaced by asparagine. Data indicated deprotonation of Asp-96 at high pH (pKa = 11.4 +/- 0.1), but no Asp-115 titration was observed. The analysis of the whole spectral region characteristic to complex conformational changes in the protein showed a more complicated titration with an additional pKa value (pKa1 = 9.3 +/- 0.3 and pKa2 = 11.5 +/- 0.2). Comparison of results obtained for bR and the D96N mutant of bR shows that the pKa approximately 11.5 characterizes not a direct titration of Asp-96 but a protein conformational change that makes Asp-96 accessible to the external medium.  相似文献   

19.
Michael K. Gilson 《Proteins》1993,15(3):266-282
Computer models of proteins frequently treat the energies and forces associated with ionizable groups as if they were purely electrostatic. This paper examines the validity of the purely electrostatic approach, and concludes that significant errors in energies can result from the neglect of ionization changes. However, a complete treatment of ionizable groups presents substantial computational obstacles, because of the large number of ionization states which must be examined in systems having multiple interacting titratable groups. In order to address this problem, two novel methods for treating the energetics and forces associated with ionizable groups with a minimum of computer time have been developed. The most rapid method yields approximate energies by computing the free energy of a single highly occupied ionization state. The second method separates ionizable groups into clusters, and treats intracluster interactions exactly, but intercluster interactions approximately. This method yields both accurate energies and fractional charges. Good results are obtained in tests of both methods on proteins having has many as 123 ionizable groups. The more rapid method requires computer times of 0.01 to 0.34 sec, while the more accurate method requires 0.7 to 15 sec. These methods may be fast enough to permit the incorporation of ionization effects in iterative computations, such as energy minimizations and conformational searches. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Electrostatic interactions in two structures of human interferon gamma (hIFNgamma), corresponding to interferon molecule alone and bound to its receptor, were analyzed on the basis of a continuum dielectric model. It was found that a number of titratable groups, mainly basic, show large pK shifts and remain in their neutral forms at physiologically relevant pH. The fact that these groups are largely common to both structures and that most of them belong to the set of most conserved sites suggests that this is a property inherent to the hIFNgamma molecule rather than an artifact of the crystal packing. His111 was also found deprotonated at neutral pH. It was concluded that receptor recognition involving His111 is driven by aromatic coupling of His111 and Tyr52 from the receptor rather than by electrostatic interactions. The structure corresponding to hIFNgamma in complex with its receptor shows a reduction in number and in degree of desolvation of the buried titratable sites. This finding suggested that on receptor binding, hIFNgamma adopts energetically more favorable, relaxed, conformation. It was experimentally shown that in contrast to the full-size hIFNgamma, the construct having 21 amino acid residues deleted from the C-terminus is soluble. The hydrophobicity profile analysis suggested that factors other than the exposure of hydrophobic parts of the molecule are responsible for the low stability and propensity for aggregation. On the basis of these results, it was assumed that the electrostatic influence of the C-terminal part contributes particularly to the low solvent exposure of the titratable groups, and hence to the low structural stability and propensity for aggregation of the recombinant hIFNgamma. Proteins 2001;43:125-133.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号