首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the effect of thyroid hormone-induced cardiac hypertrophy on PKC expression, changes in the expression of PKC isoforms were studied in hypertrophied cardiac ventricles induced by triiodothyronine (T3) injection in the rat. Injection with T3 for 8 days induced 49% increase in cardiac weight compared to controls. Immunoblot analysis of cardiac ventricular extracts showed the expression of PKC-delta, -epsilon, and -zeta in both control and T3-treated groups. The expression of PKC-epsilon decreased by 40% in hyperthyroid rat cardiac ventricles, while PKC-delta and -zeta expressions were barely affected. PKC-epsilon immunoreactivity decreased in both cytosol and membrane fractions. On the contrary, PKC-epsilon expression did not decrease in the extract of hypertrophied cardiac ventricles produced by aortic banding or aortocaval shunt. These results indicate that thyroid hormone down regulates PKC-epsilon expression in the hyperthyroid-mediated cardiac hypertrophy.  相似文献   

2.
We examined whether the mitochondrial ATP-sensitive K channel (K(ATP)) is an effector downstream of protein kinase C-epsilon (PKC-epsilon) in the mechanism of preconditioning (PC) in isolated rabbit hearts. PC with two cycles of 5-min ischemia/5-min reperfusion before 30-min global ischemia reduced infarction from 50.3 +/- 6.8% of the left ventricle to 20.3 +/- 3.7%. PC significantly increased PKC-epsilon protein in the particulate fraction from 51 +/- 4% of the total to 60 +/- 4%, whereas no translocation was observed for PKC-delta and PKC-alpha. In mitochondria separated from the other particulate fractions, PC increased the PKC-epsilon level by 50%. Infusion of 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) blocker, after PC abolished the cardioprotection of PC, whereas PKC-epsilon translocation by PC was not interfered with 5-HD. Diazoxide, a mitochondrial K(ATP) opener, infused 10 min before ischemia limited infarct size to 5.2 +/- 1.4%, but this agent neither translocated PKC-epsilon by itself nor accelerated PKC-epsilon translocation after ischemia. Together with the results of earlier studies showing mitochondrial K(ATP) opening by PKC, the present results suggest that mitochondrial K(ATP)-mediated cardioprotection occurs subsequent to PKC-epsilon activation by PC.  相似文献   

3.
The present study determined whether changes in the activity and isoforms of protein kinase C (PKC) are associated with cardiac hypertrophy and heart failure owing to volume overload induced by aortocaval shunt (AVS) in rats. A significant increase in Ca2+-dependent and Ca2+-independent PKC activities in the homogenate and particulate fractions, unlike the cystolic fraction, of the hypertrophied left ventricle (LV) were evident at 2 and 4 weeks after inducing the AVS. This increase coincided with increases in PKC-alpha and PKC-zeta contents at 2 week and increases in PKC-alpha, PKC-beta1, PKC-beta2, and PKC-zeta contents at 4 weeks in the hypertrophied LV. By 8 and 16 weeks of AVS, PKC activity and content were unchanged in the failing LV. On the other hand, no increase in the PKC activity or isoform content in the hypertrophied right ventricle (RV) was observed during the 16 weeks of AVS. The content of G alpha q was increased in the LV at 2 weeks but then decreased at 16 weeks, whereas G alpha q content was increased in RV at 2 and 4 weeks. Our data suggest that an increase in PKC isoform content neither plays an important role during the development of cardiac hypertrophy nor participates in the phase leading to heart failure owing to volume overload.  相似文献   

4.
Rho-dependent kinases serve as downstream effectors of several vasoconstrictor systems, the activities of which are upregulated in congestive heart failure (CHF). We evaluated renal and cardiac effects of Y-27632, a highly selective Rho kinase inhibitor, in an experimental model of volume-overload CHF. Effects of acute administration of Y-27632 (0.3 mg/kg) on renal hemodynamic and clearance parameters and effects of chronic treatment (10.0 mg.kg(-1).day(-1) for 7 days via osmotic minipumps) on cardiac hypertrophy and cumulative Na+ excretion were studied in male Wistar rats with aortocaval fistula and control rats. The Y-27632-induced decrease in renal vascular resistance (from 40.4 +/- 4.6 to 26.0 +/- 3.1 resistance units, P < 0.01) in CHF rats was associated with a significant increase in total renal blood flow (+34%) and cortical and medullary blood flow (approx +37 and +27%, respectively). These values were significantly higher than those in control rats and occurred despite a decrease in mean arterial pressure (-15 mmHg). Despite the marked renal vasodilatory effect, Y-27632 did not alter glomerular filtration rate and renal Na+ excretion. Chronic administration of Y-27632 did not alter daily or cumulative renal Na+ excretion in CHF rats but was associated with a significant decrease in heart-to-body weight ratio, an index of cardiac hypertrophy: 0.32 +/- 0.007, 0.46 +/- 0.017, and 0.37 +/- 0.006% in control, CHF, and CHF + Y-27632 rats, respectively. The findings suggest that Rho kinase-dependent pathways are involved in the mechanisms of renal vasoconstriction and cardiac hypertrophy in rats with volume-overload heart failure. Selective blockade of these signaling pathways may be considered an additional tool to improve renal perfusion and attenuate cardiac hypertrophy in heart failure.  相似文献   

5.
Stored cardiac pro-atrial natriuretic peptide (pro-ANP) is converted to ANP and released upon stretch from the atria into the circulation. Corin is a serin protease with pro-ANP-converting properties and may be the rate-limiting enzyme in ANP release. This study was aimed to clone and sequence corin in the rat and to analyze corin mRNA expression in heart failure when ANP release upon stretch is blunted. Full-length cDNA of rat corin was obtained from atrial RNA by RT-PCR and sequenced. Tissue distribution as well as regulation of corin mRNA expression in the atria were determined by RT-PCR and RNase protection assay. Heart failure was induced by an infrarenal aortocaval shunt. Stretch was applied to the left atrium in a working heart modus, and ANP was measured in the perfusates. The sequence of rat corin cDNA was found to be 93.6% homologous to mouse corin cDNA. Corin mRNA was expressed almost exclusively in the heart with highest concentrations in both atria. The aortocaval shunt led to cardiac hypertrophy and heart failure. Stretch-induced ANP release was blunted in shunt animals (control 1,195 +/- 197 fmol.min(-1).g(-1); shunt: 639 +/- 99 fmol.min(-1).g(-1), P < 0.05). Corin mRNA expression was decreased in both atria in shunt animals [right atrium: control 0.638 +/- 0.004 arbitrary units (AU), shunt 0.566 +/- 0.014 AU, P < 0.001; left atrium: control 0.564 +/- 0.009 AU, shunt 0.464 +/- 0.009 AU, P < 0.001]. Downregulation of atrial corin mRNA expression may be a novel mechanism for the blunted ANP release in heart failure.  相似文献   

6.
7.
Diastolic dysfunction in volume-overload hypertrophy by aortocaval fistula is characterized by increased passive stiffness of the left ventricle (LV). We hypothesized that changes in passive properties are associated with abnormal myolaminar sheet mechanics during diastolic filling. We determined three-dimensional finite deformation of myofiber and myolaminar sheets in the LV free wall of six dogs with cineradiography of implanted markers during development of volume-overload hypertrophy by aortocaval fistula. After 9 +/- 2 wk of volume overload, all dogs developed edema of extremities, pulmonary congestion, elevated LV end-diastolic pressure (5 +/- 2 vs. 21 +/- 4 mmHg, P < 0.05), and increased LV volume. There was no significant change in systolic function [dP/dt(max): 2,476 +/- 203 vs. 2,330 +/- 216 mmHg/s, P = not significant (NS)]. Diastolic relaxation was significantly reduced (dP/dt(min): -2,466 +/- 190 vs. -2,076 +/- 166 mmHg/s, P < 0.05; time constant of LV pressure decline: 32 +/- 2 vs. 43 +/- 1 ms, P < 0.05), whereas duration of diastolic filling was unchanged (304 +/- 33 vs. 244 +/- 42 ms, P = NS). Fiber stretch and sheet shear occur predominantly in the first third of diastolic filling, and chronic volume overload induced remodeling in lengthening of the fiber and reorientation of the laminar sheet architecture. Sheet shear was significantly increased and delayed at the subendocardial layer (P < 0.05), whereas magnitude of fiber stretch was not altered in volume overload (P = NS). These findings indicate that enhanced filling in volume-overload hypertrophy is achieved by enhanced sheet shear early in diastole. These results provide the first evidence that changes in motion of radially oriented laminar sheets may play an important functional role in pathology of diastolic dysfunction in this model.  相似文献   

8.
Adrenomedullin (AM) is a peptide hormone with vasodilating and natriuretic properties. AM plasma concentrations are elevated in heart failure. Whether cardiac AM-mRNA synthesis is increased in heart failure is not known. We measured AM-mRNA/GAPDH-mRNA in all four heart chambers in compensated and overt heart failure in rats with two different sizes of aortocaval shunt. Left and right atrial AM-mRNA expressions were unchanged in both heart failure models. Similarly, left and right ventricular AM-mRNA expressions were unchanged in compensated heart failure. In overt heart failure, however, the AM-mRNA expression was significantly increased in the left ventricle (145+/-20 vs. 100+/-3% of control, p<0.05). The right ventricular AM-mRNA expression was significantly increased only in a subgroup of animals with pulmonary congestion (lung weight >2.0 g, 141+/-16 vs. 100+/-11% of control, p<0.05). Ventricular AM concentrations were elevated in both ventricles in overt heart failure. AM plasma concentrations were significantly higher in the subgroup with pulmonary congestion than in rats with compensated heart failure (496+/-95 vs. 143+/-7 pmol/l, p<0.01). These data indicate that ventricular AM-mRNA expression and AM concentrations were upregulated only in advanced stages of heart failure. However, the exact contribution of cardiac AM synthesis to the increased AM plasma levels remains to be established.  相似文献   

9.
Hypertrophic growth of cardiac muscle is dependent on activation of the PKC-epsilon isoform. To define the effectors of PKC-epsilon involved in growth regulation, recombinant adenoviruses were used to overexpress either wild-type PKC-epsilon (PKC-epsilon/WT) or dominant negative PKC-epsilon (PKC-epsilon/DN) in neonatal rat cardiocytes. PKC-epsilon/DN inhibited acute activation of PKC-epsilon produced in response to phorbol ester and reduced ERK1/2 activity as measured by the phosphorylation of p42 and p44 isoforms. The inhibitory effects were specific to PKC-epsilon because PKC-epsilon/DN did not prevent translocation of either PKC-alpha or PKC-delta. Overexpression of PKC-epsilon/DN blunted the acute increase in ERK1/2 phorphorylation induced by the alpha(1)-adrenergic agonist phenylephrine (PE ). Inhibition of PKC-delta with rottlerin potentiated the effects of PE on ERK1/2 phosphorylation. PKC-epsilon/DN adenovirus also blocked cardiocyte growth as measured after 48 h of PE treatment, although the multiplicity of infection was lower than that required to block acute ERK1/2 activation. PE activated p38 mitogen-activated protein kinase as measured by its phosphorylation, but the response was not blocked by PKC inhibitors or by overexpression of PKC-epsilon/DN. Taken together, these studies show that the hypertrophic agonist PE regulates ERK1/2 activity in cardiocytes by a pathway dependent on PKC-epsilon and that PE-induced growth is mediated by PKC-epsilon.  相似文献   

10.
Specific adrenomedullin receptors have been identified as calcitonin receptor-like receptor (CRLR)/receptor activity-modifying proteins (RAMP2 and RAMP3) complexes. Although we have demonstrated that adrenomedullin is increased in volume overload-induced cardiac hypertrophy, it remains unknown whether the adrenomedullin receptor is altered or not. This study sought to investigate the significance of intracardiac adrenomedullin and its receptor system in volume overload-induced cardiac hypertrophy. Left ventricular adrenomedullin levels were higher in aortocaval shunt (ACS) rats than in controls (+58%). The left ventricular gene expressions of adrenomedullin, CRLR, RAMP2 and RAMP3 were increased (+27%, +76%, +108% and +131%, respectively) and the left ventricular collagen gene expressions were also increased (type I: +138%, type III: +87%). The left ventricular adrenomedullin level correlated with the gene expression of type III collagen (R=0.42). These results suggest that intracardiac adrenomedullin and its receptor system are upregulated and may participate in the regulation of cardiac remodeling in volume overload-induced cardiac hypertrophy.  相似文献   

11.
Stimulation of the delta(1)-opioid receptor confers cardioprotection to the ischemic myocardium. We examined the role of protein kinase C (PKC) after delta-opioid receptor stimulation with TAN-67 or D-Ala(2)-D-Leu(5)-enkephalin (DADLE) in a rat model of myocardial infarction induced by a 30-min coronary artery occlusion and 2-h reperfusion. Infarct size (IS) was determined by tetrazolium staining and expressed as a percentage of the area at risk (IS/AAR). Control animals, subjected to ischemia and reperfusion, had an IS/AAR of 59.9 +/- 1.8. DADLE and TAN-67 administered before ischemia significantly reduced IS/AAR (36.9 +/- 3.9 and 36.7 +/- 4.7, respectively). The delta(1)-selective opioid antagonist 7-benzylidenenaltrexone (BNTX) abolished TAN-67-induced cardioprotection (54.4 +/- 1.3). Treatment with the PKC antagonist chelerythrine completely abolished DADLE- (61.8 +/- 3.2) and TAN-67-induced cardioprotection (55.4 +/- 4.0). Similarly, the PKC antagonist GF 109203X completely abolished TAN-67-induced cardioprotection (54.6 +/- 6.6). Immunofluorescent staining with antibodies directed against specific PKC isoforms was performed in myocardial biopsies obtained after 15 min of treatment with saline, chelerythrine, BNTX, or TAN-67 and chelerythrine or BNTX in the presence of TAN-67. TAN-67 induced the translocation of PKC-alpha to the sarcolemma, PKC-beta(1) to the nucleus, PKC-delta to the mitochondria, and PKC-epsilon to the intercalated disk and mitochondria. PKC translocation was abolished by chelerythrine and BNTX in TAN-67-treated rats. To more closely examine the role of these isoforms in cardioprotection, we utilized the PKC-delta selective antagonist rottlerin. Rottlerin abolished opioid-induced cardioprotection (48.9 +/- 4.8) and PKC-delta translocation without affecting the translocation of PKC-alpha, -beta(1), or -epsilon. These results suggest that PKC-delta is a key second messenger in the cardioprotective effects of delta(1)-opioid receptor stimulation in rats.  相似文献   

12.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

13.
Uemura K  Aki T  Yamaguchi K  Yoshida Ki 《Life sciences》2003,72(14):1595-1607
The involvement of PKC isoform in the methamphetamine (MA)-induced death of neuron-like PC12 cell was studied. The death and the enhanced terminal dUTP nick end labeling (TUNEL) staining were inhibited by a caspase inhibitor, z-Val-Ala-Asp- (OMe)-CH(2)F (z-VAD-fmk). However, the cell death shows neither morphological nor biochemical features of apoptosis or necrosis. The cell death was suppressed by a protein kinase C (PKC) activator, 12,13-phorbol myristate acetate, but was enhanced by PKC specific inhibitor calphostin C or bisindolylmaleimide, not by PKC inhibitor relatively specific for PKC-alpha (safingol) or PKC-delta (rottlerin). Western blotting demonstrated the expression of PKC-alpha, gamma, delta, epsilon and zeta, of which PKC-epsilon translocated from the soluble to the particulate fraction after MA-treatment. Antisense to PKC-epsilon enhanced MA-induced death. A glutamate receptor antagonist MK801 abrogated the cell death, which is reversed by PKC inhibition. These data suggest that PKC-epsilon promotes PC12 cell survival through glutamate receptor suppression.  相似文献   

14.
We have studied the expression of mRNA encoding all known protein kinase C (PKC) isozymes (alpha, beta, gamma, delta, epsilon, zeta, and eta) in murine tumor cell lines that exemplify hemopoietic cells arrested at different stages of development as well as in normal hemopoietic cells. We demonstrate that some of the isozymes, PKC-alpha, -beta, and -eta, are differentially expressed in different lineages. PKC-alpha and -beta generally are not detectable in myeloid cell lines, where PKC-delta is the predominant isoform. Both PKC-alpha and -beta are abundant in most T and B lymphocytic lines, but steady state levels of PKC-beta mRNA are lowest in plasma cell tumors, which exemplify the terminally differentiated B lymphocyte. In contrast, the levels of PKC-alpha mRNA remain high in plasma cell tumors, and a novel, 2.5-kb PKC-alpha mRNA gains prominence. PKC-eta mRNA is the major PKC isoform expressed in T lymphocytes, but it also is highly abundant in some myeloid lines. PKC-delta is expressed at high levels in all the lines we studied, whereas PKC-epsilon and -zeta are found in most cells but only at rather low levels. Analysis of myeloid clones derived from bipotential B lineage progenitor cell lines suggests that the B cell phenotype is associated with the expression of PKC-alpha. The close correlation of protein levels with mRNA levels indicates that PKC expression in hemopoietic cells is mainly regulated at the level of mRNA. The lineage- and differentiation stage-specific patterns of PKC-isozyme expression presented here suggest the involvement of specific PKC isozymes in differentiation as well as lineage determination of hemopoietic cells.  相似文献   

15.
The expression of the different protein kinase C (PKC) isozymes in mouse thymocytes was studied to determine if there is a correlation between isozyme expression and thymocyte phenotype. Expression of PKC isozymes in thymocyte subsets (distinguished by the CD4 or CD8 Ag) was determined by message amplification phenotyping. The expression of mRNA for PKC-alpha, -beta, -epsilon, and -zeta, but not -gamma or -delta isozymes, was detected in all of the unstimulated thymocyte subpopulations analyzed. Thus no differences in the pattern of PKC isozyme expression were found that could be correlated with thymocyte phenotype. However, it was noted that the levels of PKC mRNA expression were affected by different stimuli in unfractionated thymocytes. Whereas mRNA levels of PKC-alpha and -beta were down-regulated by PMA and ionomycin treatment, no significant changes were seen in the levels of PKC-epsilon mRNA with these agents. PKC-epsilon mRNA decreased in thymocytes exposed to Con A similar to what has been reported for PKC-epsilon protein. PKC-zeta mRNA was also down-regulated by PMA or ionomycin, and the combination of both compounds caused a more rapid and drastic effect. Finally, PKC-delta mRNA expression was induced transiently in thymocytes only after exposure to PMA or Con A, and this induction was inhibited by ionomycin treatment. These results indicate that message levels of specific isoforms of PKC are uniquely regulated and suggest an additional level of control of PKC activity in activated lymphocytes.  相似文献   

16.
Although protein kinase C (PKC) has been implicated in cell cycle progression, cell proliferation, and tumor promotion, the precise roles of specific isoforms in these processes is not clear. Therefore, we constructed and analyzed a series of expression vectors that encode hemagglutinin-tagged wild type (WT), constitutively active mutants (Delta NPS and CAT), and dominant negative mutants of PKCs alpha, beta 1, beta 2, gamma, delta, epsilon, eta, zeta, and iota. Cyclin D1 promoter reporter assays done in serum-starved NIH3T3 cells indicated that the constitutively active mutants of PKC-alpha and PKC-epsilon were the most potent activators of this reporter, whereas the constitutively active mutant of PKC-delta inhibited its activity. Transient transfection studies with a series of 5'-deleted cyclin D1 promoter constructs showed that the proximal 964-base region, which contains AP-1, SP1, and CRE enhancer elements, is required for activation of the cyclin D1 promoter by PKC-alpha. Deletion of the AP-1 enhancer element located at position -954 upstream from the initiation site abolished PKC-alpha-dependent activation of cyclin D1 expression. Deletion of the SP1 or CRE enhancer elements did not have any effect. A dominant negative mutant of c-Jun inhibited activation of the cyclin D1 promoter in a concentration-dependent manner, providing further evidence that AP-1 activity is required for activation of the cyclin D1 promoter by PKC-alpha and PKC-epsilon. The constitutively active mutants of PKC-alpha and PKC-epsilon also activated c-fos, c-jun, and cyclin E promoter activity. Furthermore, NIH3T3 cells that stably express the constitutively active mutants of PKC-alpha or PKC-epsilon displayed increased expression of endogenous cyclins D1 and E and faster growth rates. These results provide evidence that the activation of PKC-alpha or PKC-epsilon in mouse fibroblasts can play an important role in enhancing cell cycle progression and cell proliferation.  相似文献   

17.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

18.
Expression and characterization of protein kinase C-delta   总被引:3,自引:0,他引:3  
A cDNA encoding protein kinase C-delta (PKC-delta) was isolated from a rat brain library. The coding region was subcloned into the expression vector pmt2 and transfected into COS-1 cells. Expression of the protein led to an 11-fold increase in activity as determined with a synthetic peptide based on the PKC-delta pseudosubstrate site. The Mr of PKC-delta as determined by SDS/PAGE and immunoblot analysis using anti-(PKC-delta C-terminal) antibodies was 77,000. The enzyme was purified to near homogeneity and showed total dependency on phospholipid and diacylglycerol (or phorbol esters) for activity. Like PKC-epsilon, PKC-delta displays no Ca2+ dependence for activation. The substrate specificity of PCK-delta is similar to that of PKC-epsilon but quite different from other PKCs.  相似文献   

19.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that are involved in water and electrolyte homeostasis in heart failure. Although both hormones exert almost identical biological actions, the differential regulation of cardiac ANP and BNP mRNA in compensated and overt heart failure is not known. To study the hypothesis that cardiac BNP is more specifically induced in overt heart failure, a large aortocaval shunt of 30 days duration was produced in rats and compared with compensated heart failure. Compensated heart failure was induced either by a small shunt of 30 days duration or by a large shunt of 3 days duration. Both heart failure models were characterized by increased cardiac weight, which was significantly higher in the large-shunt model, and central venous pressure. Left ventricular end-diastolic pressure was elevated only in the overt heart failure group (control: 5.7 +/- 0. 7; small shunt: 8.6 +/- 0.9; large shunt 3 days: 8.5 +/- 1.7; large shunt 30 days: 15.9 +/- 2.6 mmHg; P < 0.01). ANP and BNP plasma concentrations were elevated in both heart failure models. In compensated heart failure, ANP mRNA expression was induced in both ventricles. In contrast, ventricular BNP mRNA expression was not upregulated in any of the compensated heart failure models, whereas it increased in overt heart failure (left ventricle: 359 +/- 104% of control, P < 0.001; right ventricle: 237 +/- 33%, P < 0.01). A similar pattern of mRNA regulation was observed in the atria. These data indicate that, in contrast to ANP, cardiac BNP mRNA expression might be induced specifically in overt heart failure, pointing toward the possible role of BNP as a marker of the transition from compensated to overt heart failure.  相似文献   

20.
This study was performed to elucidate the relation between in vivo measurements of two-dimensional principal strains and the progression of left ventricle (LV) wall thinning during development of dilated cardiomyopathy in the protein kinase C-epsilon (PKC-epsilon) transgenic (TG) overexpressing mouse heart. Principal two-dimensional strains, E1 and E2, were determined in the LV wall of the anesthetized mouse using cardiac MRI tagging at 14.1 T. PKC-epsilon TG provided a model of pure dilated cardiomyopathy without evidence of hypertrophy (PKC-epsilon TG, n = 6). Ejection fraction, wall thickness, and principal strains were determined at 1-mo intervals in hearts of PKC-epsilon TG vs. age-matched, nontransgenic mice (NTG, n = 5) from age 6 to 13 mo. Through the study, PKC-epsilon TG displayed lower ejection fraction than NTG. At 7 mo, average principal strain E1 in PKC-epsilon TG hearts was lower compared with NTG (PKC-epsilon TG = 0.14 +/- 0.03, NTG = 0.19 +/- 0.03, P < 0.05). The greatest reductions in regional E1 occurred in the lateral segments. The principal strain E2 did not change significantly in either group. At 9 mo, LV wall thinning occurred in PKC-epsilon TG mice (P < 0.01 vs. 8 mo) to 21% below values in NTG (P < 0.001). Average E1 strain diverged between PKC-epsilon TG and NTG hearts by 25-43%. These E1 changes preceded LV wall thinning and predated the eventual transition from a compensated circumstance to the dilated phenotype. The findings indicate a near step function in E1 depression that precedes the onset of LV wall thinning and suggest E1 as a prognostic indicator of dilated cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号