首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human albumin (studied here as the recombinant protein rHA), a copper-binding protein in blood plasma, is shown to reduce Cu(II) to Cu(I) in the presence of a Cu(I) chelator, bathocuproinedisulfonate (BD). This reaction was accelerated at low pH, when there was little binding of Cu(II) to rHA. The addition of a competitive metal ion, Ni(II), or an increase in the concentration of BD, enhanced the reduction of Cu(II) to Cu(I). It was concluded that the oxidant was the Cu(II) complex of BD, which is likely to bind strongly to albumin. The free thiol at Cys34 was ruled out as the sole reducing agent, since Cys34-blocked albumin also gave rise to Cu(I) in the presence of BD. Reactions with amino acids and peptides suggested that Tyr and possibly His side-chains are potential reductants. BD and its homologues are frequently used as Cu(I)-specific chelators in biological experiments, but the strong oxidant activity of [Cu(II)(BD)2]2- and its ability to bind to biological macromolecules should not be overlooked, and may artificially trigger/accelerate Cu(II) reduction.  相似文献   

2.
Protein disulfide isomerase (PDI) is a 55 kDa multifunctional protein of the endoplasmic reticulum (ER) involved in protein folding and isomerization. In addition to the chaperone and catalytic functions, PDI is a major calcium-binding protein of the ER. Although the active site of PDI has a similar motif CXXC to the Cu-binding motif in Wilson and Menkes proteins and in other copper chaperones, there has been no report on any metal-binding capability of PDI other than calcium binding. We present evidence that PDI is a copper-binding protein. In the absence of reducing agent freshly reduced PDI can bind a maximum of 4 mol of Cu(II) and convert to Cu(I). These bound Cu(I) are surface exposed as they can be competed readily by BCS reagent, a Cu(I) specific chelator. However, when the binding is performed using the mixture of Cu(II) and 1mM DTT, the total number of Cu(I) bound increases to 10 mol/mol, and it is slower to react with BCS, indicating a more protected environment. In both cases, the copper-bound forms of PDI exist as tetramers while apo-protein is a monomer. These findings suggest that PDI plays a role in intracellular copper disposition.  相似文献   

3.
Copper (Cu) is one of the essential metals and its homeostasis is strictly regulated. Metallothionein (MT) is induced by excess Cu to mask the Cu toxicity. Although the role of MT in Cu toxicity has been explained in terms of Cu sequestration, its role under Cu-deficient conditions is not known. This study was carried out to determine the role of MT in Cu depletion by a Cu(I)-specific chelator, bathocuproine sulfonate (BCS), in cultured cells established from MT-knockout mouse and its wild type. Viability was decreased more severely in MT-null cells than in wild-type cells by BCS treatment. The expression levels of both MT isoforms were increased by BCS treatment in wild-type cells. Thus, MT was shown to be induced under Cu-deficient conditions to maintain the activities of intracellular cuproenzymes such as cytochrome c oxidase and Cu,zinc-superoxide dismutase.  相似文献   

4.
Copper chaperone is an essential cytosolic factor that maintains copper homeostasis in living cells. Cytosolic metallochaperones have been recently identified in plant, yeast, rodents, and human cells. During our investigation, we found a new member of the copper chaperone family for copper/zinc superoxide dismutase, which was cloned from rats. The new copper chaperone was named rCCS (rat Copper Chaperone for Superoxide dismutase). The cDNA of rCCS was found to have a length of 1094 bp, and the protein analyzed from the cDNA was deduced to contain 274 amino acids. The amino acid sequence of rCCS consists of three domains: A metal binding domain, which has a MXCXXC motif in domain I, a homolog of the Cu/Zn SOD in domain II, and a CXC motif in domain III. The binding of rCCS to Cu/Zn SOD was analyzed by GST column binding assay, and the domain II of rCCS was found to be essential for binding to Cu/Zn SOD, which in turn activates Cu/Zn SOD.  相似文献   

5.
The N-terminal, extracellular regions of eukaryotic high affinity copper transport (Ctr) proteins vary in composition of the Cu(i) binding amino acids: methionine, histidine, and cysteine. To examine why certain amino acids are exploited over others in Ctrs from different organisms, the relative Cu(i) binding affinity and the dependence of binding on pH were examined for 3 peptides of the sequence MG(2)XG(2)MK, where X is either Met, His, or Cys. Cu(i) affinity was examined using an ascorbic acid oxidation assay, an electrospray ionization mass spectrometry technique, and spectrophotometric titration with a competitive Cu(i) chelator. The relative affinities of the peptides with Cu(i) reveal a trend whereby Cys > His > Met at pH 7.4 and Cys > Met > His at pH 4.5. Ligand geometry and metric parameters were determined with X-ray absorption spectroscopy. Susceptibility of the peptides to oxidation by hydrogen peroxide and copper-catalyzed oxidative conditions was evaluated by mass spectrometry. These results support hypotheses as to why certain Cu(i) binding amino acids are preferred over others in proteins expressed at different pH and exposed to oxidative environments. The results also have implications for interpreting site-directed mutagenesis studies aimed at identifying copper binding amino acids in copper trafficking proteins.  相似文献   

6.
The biotransformation of butylated hydroxyanisole (BHA), a possible carcinogenic food antioxidant, includes o-demethylation to 2-tert-butyl(1,4)hydroquinone (TBHQ) which can subsequently be oxidized to 2-tert-butyl(1,4)paraquinone (TBQ). In this study, we have examined the capacity of Cu, a nuclei- and DNA-associated transition metal, to mediate the oxidation of TBHQ. In phosphate buffered saline (PBS), autooxidation of TBHQ to TBQ was not detectable, while Cu(II) at micromolar concentrations strongly catalyzed the oxidation of TBHQ to TBQ. Oxidation of TBHQ by Cu(II) was accompanied by the utilization of O(2) and the concomitant generation of H(2)O(2). Using electron spin resonance spectroscopy, it was observed that Cu(II) mediated the one electron oxidation of TBHQ to a semiquinone anion radical. The formation of a semiquinone anion radical, the utilization of O(2) and the generation of H(2)O(2) and TBQ could be completely blocked by bathocuproinedisulfonic acid (BCS) and reduced glutathione (GSH), two Cu(I)-chelators. 4-Pyridyl-1-oxide-N-tert-butylnitrone (POBN)-spin trapping experiments showed that the reaction of TBHQ with Cu(II) resulted in the generation of POBN-CH(3) and POBN-CH(OH)CH(3) adducts in the presence of dimethyl sulfoxide (DMSO) and ethanol, respectively, suggesting the formation of hydroxyl radical or a similar reactive intermediate. The formation of POBN-CH(3) adduct from the TBHQ/Cu(II)+DMSO could be completely inhibited by catalase, GSH or BCS, indicating that the hydroxyl radical or its equivalent is generated from the interaction of H(2)O(2) with Cu(I). Incubation of supercoiled phiX-174 plasmid DNA with the TBHQ/Cu(II) resulted in extensive DNA strand breaks, which could be prevented by catalase or BCS. Incubation of rat hepatocytes with TBHQ in PBS led to increased formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in nuclear DNA. The TBHQ-induced formation of 8-OHdG was markedly reduced in the presence of cell permeable Cu(I)-specific chelator, bathocuproine or neocuproine, suggesting that a Cu(II)/Cu(I) redox mechanism may also be involved in the induction of oxidative DNA damage by TBHQ in hepatocytes. Taken together, the above results conclusively demonstrate that the activation of TBHQ by Cu(II) results in the formation of TBQ, semiquinone anion radical and reactive oxygen species (ROS), and that the ROS formed may participate in oxidative DNA damage in both isolated DNA and intact cells. These reactions may contribute to the carcinogenicity as well as other biochemical activities observed with BHA in animals. To our knowledge this study provides the first evidence that endogenous cellular Cu may be capable of bioactivating TBHQ, leading to oxidative DNA damage in cultured cells.  相似文献   

7.
In this paper we report the up to now ignored fluorescence properties of the specific Cu(I)-chelator bathocuproine disulfonate and their application in assays of total copper and Cu(I). The method is based on the linear quenching of the bathocuproine disulfonate emission at 770 nm (lambda(ex)580 nm) by increasing concentrations of Cu(I), at pH 7.5. Copper concentrations as low as 0.1 microM can be determined. Other metal ions (iron, manganese, zinc, cadmium, cobalt, nickel) do not interfere. The procedure for total copper determination in proteins includes HCl treatment to release the copper, neutralization to pH 7.5 in the presence of citrate to stabilize the copper, and reduction of the copper to Cu(I) by ascorbate in the presence of the chelator. This assay gave results coincident with the analysis by atomic absorption spectroscopy in two selected proteins. In addition, conditions are described (omitting HCl treatment and reduction by ascorbate) for direct measurement of Cu(I) in native proteins, as illustrated for the Escherichia coli NADH dehydrogenase-2. Data show that the fluorometric assays described in this paper are simple and convenient procedures for total copper and direct Cu(I) quantification in determined biological samples.  相似文献   

8.
In a preliminary study we tested CuSO4.5H2O, (Cu(II]2[3,5-diisopropylsalicylate]4.2H2O and a number of copper complexes of substituted 1,10-phenanthrolines for superoxide anion dismutase activity. It appeared that this activity depends on the ligands involved and might be governed by the redox potential of the Cu(I) complex/Cu(II) complex couple. The strong superoxide anion dismutase activity of Cu(II)[DMP]2 complex can be expected considering its high redox potential. Rather surprisingly is the superoxide anion dismutase activity of the Cu(I)[DMP]2 complex since it involves oxidation to Cu(II)[DMP]2 complex. From regression analysis it was established that steric and field effects of the substituents of the investigated phenanthrolines play an important role in SOD activity and therefore it is concluded that complex formation is important for the superoxide dismutase-like activity.  相似文献   

9.
Copper chaperones are necessary for intracellular trafficking of copper to target proteins. This is probably because the milieu inside the cell has a large capacity for sequestering this metal. By fluorometry using a fluorescent Cu(II) chelator and by centrifugal ultrafiltration, we have studied copper binding of the whole cytosolic proteins from mouse brain and liver, and found that their binding capacity and affinity for copper were markedly increased by ascorbate. Brain cytosolic protein bound, with high affinity, 63 nmol of copper/mg, more than half of which was redox-inactive, as indicated by its inability to catalyze oxidation of ascorbate. Most of the bound copper was in the Cu(I) state, coordinating to thiol groups of protein. Cytosolic protein competed for copper more strongly than GSH when compared at their relative concentrations in tissues. The results taken together suggest that protein thiols of cytosol can strongly sequester copper.  相似文献   

10.
Transition metal-mediated oxidation of hydroquinones is an important physiologic reaction, and copper(II) effectively catalyzes the reaction in phosphate-buffered saline (PBS). Studies reported herein in phosphate buffer alone demonstrate that copper(II) is an ineffective catalyst in the absence of coordinating ligands, but that 1,10-phenanthroline and histamine facilitate the copper(II)-mediated oxidation of hydroquinone and its 2,5- and 2,6-di-tert-butyl analogs to the corresponding benzoquinones. The high concentration of chloride in PBS is the key element that allows copper(II) to work in this system. Although the bis-bathocuproine disulfonate complex of Cu(II), (BC)2Cu(II), is a strong stoichiometric oxidant, stoichiometric amounts of copper(II) in the presence of ligands other than BC oxidize hydroquinones very slowly under anaerobic conditions. Thus, the rapid copper(II)-catalyzed reaction operating aerobically does not involve a simple ping-pong reduction of copper(II) to copper(I) by hydroquinone and reoxidation of copper(I) by O2.  相似文献   

11.
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.  相似文献   

12.
Sco is a red copper protein that plays an essential yet poorly understood role in the metalation of the CuA center of cytochrome oxidase, and is stable in both the Cu(I) and Cu(II) forms. To determine which oxidation state is important for function, we constructed His135 to Met or selenomethionine (SeM) variants that were designed to stabilize the Cu(I) over the Cu(II) state. H135M was unable to complement a scoΔ strain of Bacillus subtilis, indicating that the His to Met substitution abrogated cytochrome oxidase maturation. The Cu(I) binding affinities of H135M and H135SeM were comparable to that of the WT and 100-fold tighter than that of the H135A variant. The coordination chemistry of the H135M and H135SeM variants was studied by UV/vis, EPR, and XAS spectroscopy in both the Cu(I) and the Cu(II) forms. Both oxidation states bound copper via the S atoms of C45, C49 and M135. In particular, EXAFS data collected at both the Cu and the Se edges of the H135SeM derivative provided unambiguous evidence for selenomethionine coordination. Whereas the coordination chemistry and copper binding affinity of the Cu(I) state closely resembled that of the WT protein, the Cu(II) state was unstable, undergoing autoreduction to Cu(I). H135M also reacted faster with H2O2 than WT Sco. These data, when coupled with the complete elimination of function in the H135M variant, imply that the Cu(I) state cannot be the sole determinant of function; the Cu(II) state must be involved in function at some stage of the reaction cycle.  相似文献   

13.
Nitrous oxide reductase (N2OR), Pseudomonas stutzeri, catalyses the 2 electron reduction of nitrous oxide to di-nitrogen. The enzyme has 2 identical subunits (Mr approximately 70,000) of known amino acid sequence and contains approximately 4 Cu ions per subunit. By measurement of the optical absorption, electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectra of the oxidised state, a semi-reduced form and the fully reduced state of the enzyme it is shown that the enzyme contains 2 distinct copper centres of which one is assigned to an electron-transfer function, centre A, and the other to a catalytic site, centre Z. The latter is a binuclear copper centre with at least 1 cysteine ligand and cycles between oxidation levels Cu(II)/Cu(II) and Cu(II)/Cu(I) in the absence of substrate or inhibitors. The state Cu(II)/Cu(I) is enzymatically inactive. The MCD spectra provide evidence for a second form of centre Z, which may be enzymatically active, in the oxidised state of the enzyme. Centre A is structurally similar to that of CuA in bovine and bacterial cytochrome c oxidase and also contains copper ligated by cysteine. This centre may also be a binuclear copper complex.  相似文献   

14.
Copper-induced peroxidation of lipoproteins involves continuous production of free radicals via a redox cycle of copper. Formation of Cu(I) during Cu(II)-induced peroxidation of LDL was previously demonstrated by accumulation of the colored complexes of Cu(I) in the presence of one of the Cu(I)-specific chelators bathocuproine (BC) or neocuproine (NC). All the studies conducted thus far employed high concentrations of these chelators (chelator/Cu(II) > 10). Under these conditions, at low copper concentrations the chelators prolonged the lag preceding oxidation, whereas at high copper concentrations the chelators shortened the lag. In an attempt to gain understanding of these non-monotonic effects, we have studied systematically the peroxidation of LDL (0.1 microM, 50 microg protein/mL) at varying concentrations of NC or BC over a wide range of concentrations of the chelators and copper. These studies revealed that: (i) At copper concentrations of 5 microM and below, NC prolonged the lag in a monotonic, dose-dependent fashion typical for other complexing agents. However, unlike with other chelators, the maximal rate of oxidation was only slightly reduced (if at all). (ii) At copper concentrations of 15 microM and above, the addition of about 20 microM NC or BC resulted in prolongation of the lag, but this effect became smaller at higher concentrations of the chelators, and at yet higher concentrations the lag became much shorter than that observed in the absence of chelators. Throughout the whole range of NC concentrations, the maximal rate of peroxidation increased monotonically upon increasing the NC concentration. (iii) Unlike in the absence of chelators, the prooxidative effect of copper did not exhibit saturation with respect to copper, up to copper concentrations of 30 microM. Based on these results we conclude that the copper-chelates can partition into the hydrophobic core of LDL particles and induce peroxidation by forming free radicals within the core. This may be significant with respect to the understanding of the possible mechanisms of peroxidation by chelated transition metals in vivo.  相似文献   

15.
Cu-thionein from yeast was investigated by EPR spectroscopy to probe the oxidation state of copper, and the effects on it of oxidizing and reducing agents. At pH 0.2 the copper was released, but no EPR signal from Cu(II) was observed, unless air was present. Optical experiments did not detect any disulphide groups which might have been formed during anaerobic release of copper. The mercurial, p-hydroxymercuribenzoate caused the release of EPR-detectable copper only under aerobic conditions, and EDTA caused release of Cu(II) on heating. No reduction of the copper-thiolate units in Cu-thionein by ascorbate was detected. Potentiometric titrations with hexachloroiridate(IV) or hexacyanoferrate(III) produced several different Cu(II) EPR signals at various stages of oxidation. The former oxidizing agent required a lower oxidation-reduction potential (+350 mV) to oxidize the copper, than the latter (+410 mV) and neither titration was fully reversible. The EPR signal from Cu(II) oxidized by hexachloroiridate(IV) resembled that produced by p-hydroxy-mercuribenzoate in air, suggesting that the copper was released from its thiolate ligands. It is concluded that the EPR non-detectable copper in the native protein is Cu(I). Oxidation-reduction of the copper-thiolate clusters of Cu-thionein is proposed to be decisive for controlling storage and transport of cellular copper.  相似文献   

16.
Copper is an essential trace metal whose biological utility is derived from its ability to cycle between oxidized Cu(II) and reduced Cu(I). Ctr1 is a high affinity plasma membrane copper permease, conserved from yeast to humans, that mediates the physiological uptake of Cu(I) from the extracellular environment. In the baker's yeast Saccharomyces cerevisiae, extracellular Cu(II) is reduced to Cu(I) via the action of the cell surface metalloreductase Fre1, similar to the human gp91(phox) subunit of the NADPH oxidase complex, which utilizes heme and flavins to catalyze electron transfer. The S. cerevisiae Ctr2 protein is structurally similar to Ctr1, localizes to the vacuole membrane, and mobilizes vacuolar copper stores to the cytosol via a mechanism that is not well understood. Here we show that Ctr2-1, a mutant form of Ctr2 that mislocalizes to the plasma membrane, requires the Fre1 plasma membrane metalloreductase for Cu(I) import. The conserved methionine residues that are essential for Ctr1 function at the plasma membrane are also essential for Ctr2-1-mediated Cu(I) uptake. We demonstrate that Fre6, a member of the yeast Fre1 metalloreductase protein family, resides on the vacuole membrane and functions in Ctr2-mediated vacuolar copper export, and cells lacking Fre6 phenocopy the Cu-deficient growth defect of ctr2Delta cells. Furthermore, both CTR2 and FRE6 mRNA levels are regulated by iron availability. Taken together these studies suggest that copper movement across intracellular membranes is mechanistically similar to that at the plasma membrane. This work provides a model for communication between the extracellular Cu(I) uptake and the intracellular Cu(I) mobilization machinery.  相似文献   

17.
Copper is critically important for cellular metabolism. It plays essential roles in developmental processes, including angiogenesis. The liver is central to mammalian copper homeostasis: biliary excretion is the major route of excretion for ingested copper and serves to regulate the total amount of copper in the organism. An extensive network of proteins manipulates copper disposition in hepatocytes, but comparatively little is known about this protein system. Copper exists in two oxidation states: most extracellular copper is Cu(II) and most, if not all, intracellular copper is Cu(I). Typical intracellular copper-binding proteins, such as the Cu-transporting P-type ATPases ATP7B (Wilson ATPase) and ATP7A (Menkes ATPase), bind copper as Cu(I). Accordingly, the recent discovery that the ubiquitous protein COMMD1 binds Cu(II) exclusively raises the question as to what role Cu(II) may play in intracellular processes. This issue is particularly important in the liver and brain. In humans, Wilson’s disease, due to mutations in ATP7B, exhibits progressive liver damage from copper accumulation; in some Bedlington terriers, mutations in COMMD1 are associated with chronic copper-overloaded liver disease, clinically distinct from Wilson’s disease. It seems unlikely that Cu(II), which generates reactive oxygen species through the Fenton reaction, has a physiological role intracellularly; however, Cu(II) might be the preferred state of copper for elimination from the cell, such as by biliary excretion. We argue that COMMD1 participates in the normal disposition of copper within the hepatocyte and we speculate about that role. COMMD1 may contribute to the mechanism of biliary excretion of copper by virtue of binding Cu(II). Additionally, or alternatively, COMMD1 may be an important component of an intracellular system for utilizing Cu(II), or for detecting and detoxifying it.  相似文献   

18.
Copper is essential for proper functioning of cytochrome c oxidases, and therefore for cellular respiration in eukaryotes and many bacteria. Here we show that a new periplasmic protein (PCu(A)C) selectively inserts Cu(I) ions into subunit II of Thermus thermophilus ba(3) oxidase to generate a native Cu(A) site. The purported metallochaperone Sco1 is unable to deliver copper ions; instead, it works as a thiol-disulfide reductase to maintain the correct oxidation state of the Cu(A) cysteine ligands.  相似文献   

19.
The amyloid precursor protein (APP) copper-binding domain (CuBD) has been shown to reduce Cu(II) to Cu(I) and to mediate copper-induced oxidation in vitro. However, little is known about copper binding to the homologous domains of APP and APP family paralogs and orthologs (including amyloid precursor-like proteins from Drosophila melanogaster, Xenopus laevis, and Caenorhabditis elegans) and their effects on Cu-induced oxidation and Cu(I) formation. Here, we show that APP homologues with and without conserved histidine residues at positions 147, 149, and 151 all bind Cu(II). Oxidized peptides were the kinetically favored products of the redox reaction of CuBDs promoting the reduction of Cu(II) to Cu(I). These results reveal a molecular phylogeny-based divergence that has taken place between the ancestral Drosophila APPL and C. elegans APL-1 and the recently evolved APP lineage of CuBDs. Whereas higher species CuBDs have a decreased affinity for Cu(II) and high Cu(II) reducing activities, ancestral CuBDs form very tight binding sites for Cu(II) ions and have low Cu(II) reducing activities. Thus, the APP lineage displays a gain in activity toward promoting Cu(II) reduction and Cu(I) release. The findings suggests that the Cu(II)-binding equilibrium at the phylogenetic stage of Drosophila APPL and C. elegans APL-1 is shifted from the exchangeable Cu(II) pool to the tightly bound, nonexchangeable pool and that ancestral CuBDs may exert antioxidation activities in vivo. The more recently evolved homologues of human APP appear to take advantage of unique redox properties for yet unknown biological functions.  相似文献   

20.
The beta-amyloid precursor protein (beta-APP) contains a copper-binding site localized between amino acids 135 and 156 (beta-APP(135-156)). We have employed synthetic beta-APP peptides to characterize their capacities to reduce Cu(II) to Cu(I). Analogues of the wild-type beta-APP(135-156) peptide, containing specific amino acid substitutions, were used to establish which residues are specifically involved in the reduction of copper by beta-APP(135-156). We report here that beta-APP's copper-binding domain reduced Cu(II) to Cu(I). The single-mutant beta-APP(His147-->Ala) and the double-mutant beta-APP(His147-->Ala/His149-->Ala) showed a small decrease in copper reduction in relation to the wild-type peptide and the beta-APP(Cys144-->Ser) mutation abolished it, suggesting that Cys144 is the key amino acid in the oxidoreduction reaction. Our results confirm that soluble beta-APP is involved in the reduction of Cu(II) to Cu(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号