首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have studied the kinetics of guanine incorporation into DNA in mouse T-lymphoma (S-49) mutant cells [PNPase (purine-nucleoside phosphorylase)- and HGPRTase (hypoxanthine: guanine phosphoribosyltransferase)-deficient] that are incapable of converting dGuo (deoxyguanosine) to Gua (guanine) ribonucleotides. Of the two possible pathways for an exogenous guanine source to reach DNA, firstly: dGuo----dGMP----dGDP----dGTP and secondly: Gua----GMP----GDP----dGDP----dGTP only the second pathway was found to be functional in providing guanine for DNA replication, although deoxyguanosine readily produced toxic cellular dGTP levels via the first pathway. The functional guanine-nucleotide-precursor pools for DNA are rather small; further, the depletion of the small GMP pool, but not that of GDP, GTP and dGTP, correlated well with the inhibition of DNA synthesis by mycophenolic acid, an IMP dehydrogenase inhibitor. These results support the hypothesis that guanine-nucleotide incorporation into DNA is highly compartmentalized and that a small functional guanine-nucleotide pool, e.g., the GMP pool, may serve a crucial role in limiting the availability of DNA precursor substrate.  相似文献   

2.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N6-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164 ± 5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (kcat/Km 2.1 × 106 s− 1 M− 1), followed by 2′-deoxyadenosine (kcat/Km 4.2 × 105 s− 1 M− 1). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

3.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

4.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

5.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

6.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

7.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions.  相似文献   

8.
Phosphopentomutase (PPM) catalyzes the interconversion of α-d-(deoxy)-ribose 1-phosphate and α-d-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on d-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-d-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s−1 at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date.  相似文献   

9.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

10.
The chemical composition of epicuticular waxes of Mandevilla guanabarica and Mandevilla moricandiana was comparatively analyzed by extraction in n-hexane and chloroform. The mean wax content per unit of leaf area in the n-hexane extract was about 13–30 μg cm−2 for M. guanabarica, containing 20–28% n-alkanes and 55–63% triterpenes; for M. mori-candiana, the mean content was 19 μg cm−2, containing 73% n-alkanes and 14% triterpenes. In the chloroform extract, the wax yield was 40–80 μg cm−2 for M. guanabarica, with about 9–11% n-alkanes and 75–82% triterpenes; while for M. moricandiana, the wax yield was 110 μg cm−2, with 52% n-alkanes and 14% triterpenes. The major compounds identified were lupeol, pentacyclic triterpenes of the α- and β-amyrin class, and n-alkanes such as nonacosane, hentriacontane and tritriacontane. These results indicate that the quantitative chemical profiles of epicuticular waxes of M. guanabarica and M. moricandiana are distinct and could be used as an additional feature in taxonomic identification.  相似文献   

11.
Palladium nanoparticles were potentiostatically electrodeposited on a gold surface at a highly negative potential. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and the process of immobilization and hybridization was detected by electrochemical methods. The proposed method for detection of the complementary sequence and a non-complementary sequence was applied. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples with and without PCR. The genosensor could detect the complementary sequence with a sensitivity of 0.02 μA dm3 mol−1, a linear concentration range of 1.0 × 10−12 to 1.0 × 10−19 mol dm−3, and a detection limit of 2.7 × 10−20 mol dm−3.  相似文献   

12.
Although it is known that (i) O6-alkylguanine-DNA alkyltransferase (AGT) confers tumor cell resistance to guanine O6-targeting drugs such as cloretazine, carmustine, and temozolomide and that (ii) AGT levels in tumors are highly variable, measurement of AGT activity in tumors before treatment is not a routine clinical practice. This derives in part from the lack of a reliable clinical AGT assay; therefore, a simple AGT assay was devised based on transfer of radioactive benzyl residues from [benzene-3H]O6-benzylguanine ([3H]BG) to AGT. The assay involves incubation of intact cells or cell homogenates with [3H]BG and measurement of radioactivity in a 70% methanol precipitable fraction. Approximately 85% of AGT in intact cells was recovered in cell homogenates. Accuracy of the AGT assay was confirmed by examination of AGT levels by Western blot analysis with the exception of false-positive results in melanin-containing cells due to [3H]BG binding to melanin. Second-order kinetic constants for human and murine AGT were 1100 and 380 M−1 s−1, respectively. AGT levels in various human cell lines ranged from less than 500 molecules/cell (detection limit) to 45,000 molecules/cell. Rodent cell lines frequently lacked AGT expression, and AGT levels in rodent cells were much lower than in human cells.  相似文献   

13.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

14.
Mutations in the transpeptidase domain of penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae that reduce the affinity to beta-lactams are important determinants of resistance to these antibiotics. We have now analyzed in vitro and in vivo properties of PBP2x variants from cefotaxime-resistant laboratory mutants and a clinical isolate. The patterns of two to four resistance-specific mutations present in each of the proteins, all of which are placed between 6.6 and 24 Å around the active site, fall into three categories according to their positions in the three-dimensional structure. The first PBP2x group is characterized by mutations at the end of helix α11 and carries the well-known T550A change and/or one mutation on the surface of the penicillin-binding domain in close contact with the C-terminal domain. All group I proteins display very low acylation efficiencies, ≤ 1700 M− 1 s− 1, for cefotaxime. The second class represented by PBP2x of the mutant C505 shows acylation efficiencies below 100 M− 1 s− 1 for both cefotaxime and benzylpenicillin and contains the mutation L403F at a critical site close to the active serine. PBP2x of the clinical isolate 669 reveals a third mutational pathway where at least the two mutations Q552E and S389L are important for resistance, and acylation efficiency is reduced for both beta-lactams to around 10,000 M− 1 s− 1. In each group, at least one mutation is located in close vicinity to the active site and mediates a resistance phenotype in vivo alone, whereas other mutations might exhibit secondary effects only in context with other alterations.  相似文献   

15.
This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M−1 s−1) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M−1 s−1). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities.  相似文献   

16.
The rate of transbilayer movement (flip-flop) of cholesterol was estimated using planar bilayers with defined initial asymmetry, formed by the opposing monolayers technique. Vibrio cholerae cytolysin (VCC) was utilized as a molecular tool for measuring the cholesterol concentration in the cis leaflet of asymmetric bilayers. To quantify cholesterol flip-flop in planar lipid bilayers, a mathematical model was developed. It considers both the lateral diffusion rate of cholesterol within each monolayer and the flip-flop rate. The difference in initial and steady-state cholesterol contents in bilayer leaflets was used as a start point. Assuming the lateral diffusion coefficient to be of 1 × 10−8 cm2 s−1, the characteristic time of cholesterol flip-flop at 25 ± 2 °C was estimated as <10 s.  相似文献   

17.
Pang X  Qin S  Zhou HX 《Biophysical journal》2011,(5):1744-1183
The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies () were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with . Together these results suggest that protein charges can be manipulated to tune ka and control biological function.  相似文献   

18.
The isolation of lectins from Myracrodruon urundeuva bark (MuBL) and heartwood (MuHL) as well as the termiticidal activity of MuHL against Nasutitermes corniger has already been described. This work reports on the purification of a leaf lectin (MuLL) and the characterization of MuBL, MuHL, and MuLL; also described are the resistance of hemagglutinating activity of the three lectins to trypsin activity from N. corniger gut and the termiticidal activity on N. corniger of MuBL (LC50 of 0.974 mg ml−1 on workers and 0.787 mg ml−1 on soldiers) and MuLL (LC50 of 0.374 mg ml−1 on workers and 0.432 mg ml−1 on soldiers). The antibacterial effect of MuBL, MuHL, and MuLL on bacteria from gut of N. corniger was also investigated and lectins showed similar bacteriostatic activity (MIC of 62.5 ??g ml−1 for workers and 125 ??g ml−1 for soldiers). MuBL and MuHL were more efficient bactericidal agents on bacteria in the workers’ gut (MBC of 125 ??g ml−1) than MuLL (MBC of 250 ??g ml−1) and similar bactericidal activity was detected on bacteria in the gut of soldiers (MBC of 250 ??g ml−1). The termiticidal activity of M. urundeuva lectins can be explained by the chitin-binding property, resistance to termite digestive enzyme, and the antibacterial effect on symbiotic bacteria of N. corniger gut.  相似文献   

19.
A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, −10, and −9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 104 M−1 s−1 and 2.4 (±0.3) × 103 M−1 s−1 for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, −2, −3, −8, −9, −12, and −14. This substrate provides a unique tool in which to assess ADAM17, −10, and −9 activities.  相似文献   

20.
The uptake kinetics of phosphate (Pi) by Myriophyllum spicatum was determined from adsorption and absorption under light and dark conditions. Pi uptake was light dependent and showed saturation following the Michaelis-Menten relation (in light: V = 16.91 × [Pi](1.335 + [Pi]), R2 = 0.90, p < 0.001; in the dark: V = 5.13 × [Pi](0.351 + [Pi]), R2 = 0.77, p < 0.001). Around 77% of the loss of Pi in the water column was absorbed into the tissue of M. spicatum, and only 23% was adsorbed on the surface of the plant shoots. Our study shows that M. spicatum shoots have a much higher affinity (in light: 3.9 μmol g−1 dw h−1 μM−1; in the dark: 3.7 μmol g−1 dw h−1 μM−1) and Vmax (maximum uptake rate, shoot light) for Pi uptake than many other aquatic macrophytes (in light: 0.002-0.23 μmol g−1 dw h−1 μM−1; in the dark: 0.002-0.19 μmol g−1 dw h−1 μM−1), which may provide a competitive advantage over other macrophytes across a wide range of Pi concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号