首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
G Jung  C J Schmidt  J A Hammer 《Gene》1989,82(2):269-280
We have determined the complete sequence and structure of a second myosin I heavy-chain gene from Acanthamoeba castellanii. This gene, which we have named MIL, spans approx. 6kb, is split by 17 introns, encodes a 1147-aa polypeptide, and is transcribed in log-phase cells. The positions of six of the introns are conserved relative to a vertebrate muscle myosin gene. Similar to the previously characterized MIB heavy-chain gene, the deduced MIL heavy-chain aa sequence reveals a 125-kDa protein composed of a myosin globular head domain joined to a novel, approx. 50-kDa C-terminal domain that is rich in glycine, proline and alanine residues. There are differences, however, between MIL and MIB in the sequence organization of their unconventional C-terminal domains. We conclude from this and other data that Acanthamoeba express at least three myosin I heavy-chain isoforms: MIL, plus MIA and MIB, whose purifications have been published previously. Amoeba genomic DNA blots probed with a short, highly conserved sequence whose position is transposed between MIB and MIL indicate that the Acanthamoeba myosin I heavy-chain gene family may actually contain as many as six genes. Finally, we compared the myosin I sequences with those of two related proteins, Drosophila NinaC and the bovine myosin I-like protein, and found that a portion of the unconventional C-terminal domains of the amoeba myosins I and the bovine protein appear to be related.  相似文献   

3.
Tetrahymena thermophila mitochondrial DNA is a linear molecule with two tRNAs, large subunit beta (LSU beta) rRNA (21S rRNA) and LSU alpha rRNA (5.8S-like RNA) encoded near each terminus. The DNA sequence of approximately 550 bp of this region was determined in six species of Tetrahymena. In three species the LSU beta rRNA and tRNA(leu) genes were not present on one end of the DNA, demonstrating a mitochondrial genome organization different from that of T. thermophila. The DNA sequence of the LSU alpha rRNA was used to construct a mitochondrial phylogenetic tree, which was found to be topologically equivalent to a phylogenetic tree based on nuclear small subunit rRNA sequences (Sogin et al. (1986) EMBO J. 5, 3625-3630). The mitochondrial rRNA gene was found to accumulate base-pair substitutions considerably faster than the nuclear rRNA gene, the rate difference being similar to that observed for mammals.  相似文献   

4.
We have completely sequenced a gene encoding the heavy chain of myosin II, a nonmuscle myosin from the soil ameba Acanthamoeba castellanii. The gene spans 6 kb, is split by three small introns, and encodes a 1,509-residue heavy chain polypeptide. The positions of the three introns are largely conserved relative to characterized vertebrate and invertebrate muscle myosin genes. The deduced myosin II globular head amino acid sequence shows a high degree of similarity with the globular head sequences of the rat embryonic skeletal muscle and nematode unc 54 muscle myosins. By contrast, there is no unique way to align the deduced myosin II rod amino acid sequence with the rod sequence of these muscle myosins. Nevertheless, the periodicities of hydrophobic and charged residues in the myosin II rod sequence, which dictate the coiled-coil structure of the rod and its associations within the myosin filament, are very similar to those of the muscle myosins. We conclude that this ameba nonmuscle myosin shares with the muscle myosins of vertebrates and invertebrates an ancestral heavy chain gene. The low level of direct sequence similarity between the rod sequences of myosin II and muscle myosins probably reflects a general tolerance for residue changes in the rod domain (as long as the periodicities of hydrophobic and charged residues are largely maintained), the relative evolutionary "ages" of these myosins, and specific differences between the filament properties of myosin II and muscle myosins. Finally, sequence analysis and electron microscopy reveal the presence within the myosin II rodlike tail of a well-defined hinge region where sharp bending can occur. We speculate that this hinge may play a key role in mediating the effect of heavy chain phosphorylation on enzymatic activity.  相似文献   

5.
Reddy AS  Day IS 《Genome biology》2001,2(7):research0024.1-research002417

Background

Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants.

Results

Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication.

Conclusions

Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.  相似文献   

6.
7.
8.
The low-shear viscosity of 5-30 microM F-actin was greatly increased by the addition of 0.1-0.5 microM unphosphorylated Acanthamoeba myosins IA and IB. The increase in viscosity was about the same in 2 mM ADP as in the absence of free nucleotide but was much less in 2 mM ATP. The single-headed monomolecular Acanthamoeba myosins were as effective as an equal molar concentration of two-headed muscle heavy meromyosin and much more effective than single-headed muscle myosin subfragment-1. These results suggest that Acanthamoeba myosins IA and IB can cross-link actin filaments as proposed in the accompanying paper (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179) to explain the actin-dependent cooperative increase in actin-activated Mg2+-ATPase activity as a function of the concentration of myosin I. Superprecipitation occurred when phosphorylated myosin IA or IB was mixed with F-actin. In addition to myosin I heavy chain phosphorylation, superprecipitation required Mg2+ and ATP. ATP hydrolysis was linear during the time course of the superprecipitation, and inhibitors of ATP hydrolysis inhibited superprecipitation. A small, dense contracted gel was formed when the reaction was carried out in a cuvette, and a birefringent actomyosin thread resulted from superprecipitation in a microcapillary. The rate and extent of superprecipitation depended on the actin and myosin I concentrations with maximum superprecipitation occurring at an actin:myosin ratio of 7:1. These results provide strong evidence for the ability of Acanthamoeba myosins IA and IB to perform contractile and motile functions.  相似文献   

9.
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.Correspondence to: A.C. van der Kuyl  相似文献   

10.
Myosins play an important role in various developmental processes in plants. We have identified 14 myosin genes in rice (Oryza sativa cv. Nipponbare) genome using sequence information available in public databases. Phylogenetic analysis of these sequences with other plant and non-plant myosins revealed that two of the predicted sequences belonged to class VIII and the others to class XI. All of these genes were distributed on seven chromosomes in the rice genome. Domain searches on these sequences indicated that a typical rice myosin consisted of Myosin_N, head domain, neck (IQ motifs), tail, and dilute (DIL) domain. Based on the sequence information obtained from predicted myosins, we isolated and sequenced two full-length cDNAs, OsMyoVIIIA and OsMyoXIE, representing each of the two classes of myosins. These two cDNAs isolated from different organs existed in isoforms due to differential splicing and showed minor differences from the predicted myosin in exon organization. Out of 14 myosin genes 11 were expressed in three major organs: leaves, panicles, and roots, among which three myosins exhibited different expression levels. On the other hand, three of the total myosin sequences showed organ-specific expression. The existence of different myosin genes and their isoforms in different organs or tissues indicates the diversity of myosin functions in rice.  相似文献   

11.
Research on mitochondrial nucleic acids has produced major surprises. These include: (1) a novel mechanism for reading the genetic code, (2) the first examples of deviations from the ‘universal’ genetic code, and (3) the finding that protein genes can be located totally within introns of other genes. The first indication that sequences within introns are important in RNA splicing came from analyses of mitochondrial introns and recent studies have revealed a close relationship between the majority of mitochondrial introns on the one hand and one class of nuclear introns, the ‘self-splicing’ rRNA introns, on the other.  相似文献   

12.
Acanthamoeba myosins IA and IB are single-headed, monomeric molecules consisting of one heavy chain and one light chain. Both have high actin-activated Mg2+-ATPase activity, when the heavy chain is phosphorylated, but neither seems to be able to form the bipolar filaments that are generally thought to be required for actomyosin-dependent contractility. In this paper, we show that, at fixed F-actin concentration, the actin-activated Mg2+-ATPase activities of myosins IA and IB increase about 5-fold in specific activity in a cooperative manner as the myosin concentration is increased. The myosin concentration range over which this cooperative change occurs depends on the actin concentration. More myosin I is required for the cooperative increase in activity at high concentrations of F-actin. The cooperative increase in specific activity at limiting actin concentrations is caused by a decrease in the KATPase for F-actin. The high and low KATPase states of the myosin have about the same Vmax at infinite actin concentration. Both myosins are completely bound to the F-actin long before the Vmax values are reached. Therefore, much of the actin activation must be the result of interactions between F-actin and actomyosin. These kinetic data can be explained by a model in which the cooperative shift of myosin I from the high KATPase to the low KATPase state results from the cross-linking of actin filaments by myosin I. Cross-linking might occur either through two actin-binding sites on a single molecule or by dimers or oligomers of myosin I induced to form by the interaction of myosin I monomers with the actin filaments. The ability of Acanthamoeba myosins IA and IB to cross-link actin filaments is demonstrated in the accompanying paper (Fujisaki, H., Albanesi, J.P., and Korn, E.D. (1985) J. Biol. Chem. 260, 11183-11189).  相似文献   

13.
A series of 18 small overlapping restriction fragments has been cloned, covering the complete mitochondrial genome of Schizosaccharomyces pombe. By hybridizing mitochondrial gene probes from Saccharomyces cerevisiae and Neurospora crassa with restriction fragments of Schizosaccharomyces pombe mitochondrial DNA, the following homologous genes were localized on the mitochondrial genome of S. pombe: cob, cox1, cox2 and cox3, ATPase subunit 6 and 9 genes, the large rRNA gene and both types of open reading frames occurring in mitochondrial introns of various ascomycetes. The region of the genome, hybridizing with cob exon probes is separated by an intervening sequence of about 2500 bp, which is homologous with the first two introns of the cox1 gene in Saccharomyces cerevisiae (class II introns according to Michel et al. 1982). Similarly, in the cox1 homologous region, which covers about 4000 bp, two regions were detected hybridizing with class I intron probes, suggesting the existence of two cox1 introns in Schizosaccharomyces pombe. Hybridization with several specific exon probes with a determined order has revealed that cob, cox1, cox3 and the large rRNA gene are all transcribed from the same DNA strand. The low intensities of hybridization signals suggest a large evolutionary distance between Schizosaccharomyces pombe and Saccharomyces cerevisiae or Neurospora crassa mitochondrial genes. Considering the length of the mitochondrial DNA of Schizosaccharomyces pombe (about 19.4 kbp) and the expected length of the localized genes and intron sequences there is enough space left for encoding the expected set of tRNAs and the small rRNA gene. The existence of leader-, trailer-, ori- and spacer sequences or further unassigned reading frames is then restricted to a total length of about 3000 bp only.  相似文献   

14.
An improved protocol, including DNA extraction with Chelex, two amplifications with a nested primer set, and DNA purification by electrophoresis, made it possible to analyze nuclear rDNA sequences of powdery mildew fungi using at most several hundred conidia or 20 cleistothecia. Nucleotide sequence diversity of the nuclear rDNA region containing the two internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene derived from conidia and cleistothecia was investigated for four kinds of powdery mildew fungi including two isolates of the same species. The results showed that the nucleotide sequences of the nuclear rDNA region were highly conserved between the teleomorph and the anamorph. Thus, the nucleotide sequence data obtained from either developmental stage can be used for phylogenetic studies of powdery mildew fungi. The nucleotide sequences of the 5.8S rRNA genes of the four species were highly conserved, but those of their ITS regions were variable. This suggests that the nuclear rDNA region is not suitable for phylogenetic studies of distantly related powdery mildew fungi, because too much sequence diversity exists, within the ITS, and too little phylogenetic information is contained within the 5.8S rRNA gene. However, the ITS region will be useful for phylogenetic comparison of closely related species or intraspecies. Contribution No. 132 from the Laboratory of Plant Pathology, Mie University.  相似文献   

15.
Ribosomal DNA: molecular evolution and phylogenetic inference.   总被引:79,自引:0,他引:79  
Ribosomal DNA (rDNA) sequences have been aligned and compared in a number of living organisms, and this approach has provided a wealth of information about phylogenetic relationships. Studies of rDNA sequences have been used to infer phylogenetic history across a very broad spectrum, from studies among the basal lineages of life to relationships among closely related species and populations. The reasons for the systematic versatility of rDNA include the numerous rates of evolution among different regions of rDNA (both among and within genes), the presence of many copies of most rDNA sequences per genome, and the pattern of concerted evolution that occurs among repeated copies. These features facilitate the analysis of rDNA by direct RNA sequencing, DNA sequencing (either by cloning or amplification), and restriction enzyme methodologies. Constraints imposed by secondary structure of rRNA and concerted evolution need to be considered in phylogenetic analyses, but these constraints do not appear to impede seriously the usefulness of rDNA. An analysis of aligned sequences of the four nuclear and two mitochondrial rRNA genes identified regions of these genes that are likely to be useful to address phylogenetic problems over a wide range of levels of divergence. In general, the small subunit nuclear sequences appear to be best for elucidating Precambrian divergences, the large subunit nuclear sequences for Paleozoic and Mesozoic divergences, and the organellar sequences of both subunits for Cenozoic divergences. Primer sequences were designed for use in amplifying the entire nuclear rDNA array in 15 sections by use of the polymerase chain reaction; these "universal" primers complement previously described primers for the mitochondrial rRNA genes. Pairs of primers can be selected in conjunction with the analysis of divergence of the rRNA genes to address systematic problems throughout the hierarchy of life.  相似文献   

16.
Sugita M  Iwataki Y  Nakano K  Numata O 《Gene》2011,480(1-2):10-20
Myosins are eukaryotic actin-dependent molecular motors that play important roles in many cellular events. The function of each myosin is determined by a variety of functional domains in its tail region. In some major model organisms, the functions and properties of myosins have been investigated based on their amino acid sequences. However, in protists, myosins have been little studied beyond the level of genome sequences. We therefore investigated the mRNA expression levels and amino acid sequences of 13 myosin genes in the ciliate Tetrahymena thermophila. This study is an overview of myosins in T. thermophila, which has no typical myosins, such as class I, II, or V myosins. We showed that all 13 myosins were expressed in vegetative cells. Furthermore, these myosins could be divided into 3 subclasses based on four functional domains in their tail regions. Subclass 1 comprised of 8 myosins has both MyTH4 and FERM domains, and has a potential to function in vesicle transport or anchoring between membrane and actin filaments. Subclass 2 comprised of 4 myosins has RCC1 (regulator of chromosome condensation 1) domains, which are found only in some protists, and may have unconventional features. Subclass 3 is comprised of one myosin, which has a long coiled-coil domain like class II myosin. In addition, phylogenetic analysis on the basis of motor domains showed that T. thermophila myosins are separated into two clusters: one consists of subclasses 1 and 2, and the other consists of subclass 3.  相似文献   

17.
Mitochondrial genome organization and cytoplasmic male sterility in plants   总被引:2,自引:0,他引:2  
Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.  相似文献   

18.
19.
The alignment of gene sequences coding for A. nidulans mitochondrial L-rRNA and E. coli 23S rRNA indicates a strong conservation of primary and potential secondary structure of both rRNA molecules, except that homologies to the 5'-terminal 5.8S-like region and the 3'-terminal 4.5S-like region of bacterial rRNA are not detectable on mtDNA. The structural organization of the A. nidulans mt L-rRNA gene corresponds to that of yeast omega + strains: both genes are interrupted by a large intron sequence (1678 and 1143 bp, respectively) and by another smaller insert (91 and 66 bp) at homologous positions within domain V. An evolutionary tree derived from conserved L-rRNA gene sequences of yeast nuclei, E. coli, maize chloroplasts and six mitochondrial species exhibits a common root of organelle and bacterial sequences separating early from the nuclear branch.  相似文献   

20.
Pulsed field gel electrophoresis has been used to resolve chromosome-sized DNA molecules in fungi and parasites but has not yet been used successfully to examine the chromosomes of other lower eukaryotes used extensively for biochemical research such as Acanthamoeba, Physarum, and Dictyostelium. Here we show an electrophoretic karyotype of the protozoan Acanthamoeba castellanii using orthogonal field alternating gel electrophoresis (OFAGE). There are about 20 small chromosomes ranging in size from 220 kb to >2 Mb. We have assembled initial linkage groups assigning all of the cloned Acanthamoeba genes to chromosome-sized DNA molecules. Actin, suggested to have three or more non-allelic genes, maps to at least eight distinct chromosome bands. Two myosin II genes localize to two different chromosomal bands while myosin IB and 18S rRNA map to unresolved larger chromosomes.Abbreviations OFAGE Orthogonal field alternating gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号