共查询到20条相似文献,搜索用时 15 毫秒
1.
A coenzyme B 12-dependent glycerol dehydratase from Lactobacillus reuteri has been purified and characterized. The dehydratase has a molecular weight of approximately 200,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single major band with a molecular weight of 52,000. Km values for substrates and coenzyme B 12 were in the millimolar and the submicromolar range, respectively. 相似文献
2.
We found that Lactobacillus reuteri CRL1098, a lactic acid bacterium isolated from sourdough, is able to produce cobalamin. The sugar-glycerol cofermentation in vitamin B(12)-free medium showed that this strain was able to reduce glycerol through a well-known cobalamin-dependent reaction with the formation of 1,3-propanediol as a final product. The cell extract of L. reuteri corrected the coenzyme B12 requirement of Lactobacillus delbrueckii subsp. lactis ATCC 7830 and allowed the growth of Salmonella enterica serovar Typhimurium (metE cbiB) and Escherichia coli (metE) in minimal medium. Preliminary genetic studies of cobalamin biosynthesis genes from L. reuteri allowed the identification of cob genes which encode the CobA, CbiJ, and CbiK enzymes involved in the cobalamin pathway. The cobamide produced by L. reuteri, isolated in its cyanide form by using reverse-phase high-pressure liquid chromatography, showed a UV-visible spectrum identical to that of standard cyanocobalamin (vitamin B12). 相似文献
4.
Mannitol is a natural polyol extensively used in the food industry as low-calorie sugar being applicable for diabetic food products. We aimed to evaluate mannitol production by Lactobacillus reuteri CRL 1101 using sugarcane molasses as low-cost energy source. Mannitol formation was studied in free-pH batch cultures using 3-10% (w/v) molasses concentrations at 37?°C and 30?°C under static and agitated conditions during 48?h. L. reuteri CRL 1101 grew well in all assayed media and heterofermentatively converted glucose into lactic and acetic acids and ethanol. Fructose was used as an alternative electron acceptor and reduced it to mannitol in all media assayed. Maximum mannitol concentrations of 177.7?±?26.6 and 184.5?±?22.5?mM were found using 7.5% and 10% molasses, respectively, at 37?°C after 24-h incubation. Increasing the molasses concentration from 7.5% up to 10% (w/v) and the fermentation period up to 48?h did not significantly improve mannitol production. In agitated cultures, high mannitol values (144.8?±?39.7?mM) were attained at 8?h of fermentation as compared to static ones (5.6?±?2.9?mM), the highest mannitol concentration value (211.3?±?15.5?mM) being found after 24?h. Mannitol 2-dehydrogenase (MDH) activity was measured during growth in all fermentations assayed; the highest MDH values were obtained during the log growth phase, and no correlation between MDH activities and mannitol production was observed in the fermentations performed. L. reuteri CRL 1101 successfully produced mannitol from sugarcane molasses being a promising candidate for microbial mannitol synthesis using low-cost substrate. 相似文献
5.
ObjectivesTo elucidate the molecular mechanisms involved in the substrate interaction of the bile salt hydrolase of Lactobacillus reuteri CRL 1098 (LrBSH) with bile acids (BAs) and to evaluate potential enzyme inhibitors based on computer and in vitro modeling assays. ResultsAsp19, Asn79, and Asn171 participated in the LrBSH interaction with all BAs tested while Leu56 and Glu 222 played an important role in the interaction with glyco- and tauro-conjugated BAs, respectively. A great percentage of hydrophobic and polar interactions were responsible for the binding of LrBSH with glyco- and tauro-conjugated BAs, respectively. Remarkably, the four binding pocket loops participated in the substrate binding site of LrBSH unlike most of the reported BSHs. Inhibition assays showed that ascorbic acid, citric acid, penicillin G, and ciprofloxacin decreased LrBSH activity by 47.1%, 40.14%, 28.8%, and 9%, respectively. Docking analysis revealed that tetracycline and caffeic acid phenethyl ester had the low binding energy (?7.32 and ?7.19 kcal/mol, respectively) and resembled the interaction pattern of GDCA (?6.88 kcal/mol) while penicillin (?6.25 kcal/mol) and ascorbic acid (?5.98 kcal/mol) interacted at a longer distance. ConclusionThis study helps to delve into the molecular mechanisms involved in the recognition of substrates and potential inhibitors of LrBSH. 相似文献
6.
An alanine racemase gene from Lb. reuteri was cloned by using degenerate oligonucleotides corresponding to conserved regions derived from several bacterial alanine
racemases. The protein is 375αα in length and shows 63.6% homology to the Lb. plantarum alanine racemase. Unlike the single alanine racemase activity found in Lb. plantarum, deletion of the Lb. reuteri alanine racemase reveals a second activity, which is inhibited by β-chloro- D-alanine.
Received: 26 June 2001 / Accepted: 30 July 2001 相似文献
8.
The production of a proteinase from Lactobacillus helveticus CRL 581 was studied. The highest specific activity was found at the early exponential growth phase of cells cultured in milk.
The lowest levels of proteinase were detected in MRS broth, while in the casein–yeast extract–glucose broth enzyme production
increased gradually during the fermentation and reached maximal values at the stationary phase. The proteinase, found to be
associated with the cell membrane fraction, hydrolyzed β-casein more rapidly than α-casein. The enzyme was not released from
washed cells in the presence or absence of calcium, which suggests that the enzyme did not undergo self-digestion.
Received: 28 January 1997 / Accepted: 8 March 1997 相似文献
9.
Taurocholic acid transport in Lactobacillus reuteri CRL 1098 was determined. The bile acid is incorporated inside the cells by an active and saturable transport showing a typical
kinetics of Michaelis-Menten with values of K
m
and V
max
of 0.35 mm and 20 mm, respectively.
Received: 30 May 2000/Accepted: 5 July 2000 相似文献
10.
AbstractGlucansucrases, which can be produced by different Lactic Acid Bacteria (LAB), catalyze the synthesis of α-glucans with different structures and properties using sucrose as substrate. In this study, a novel glucansucrase (GTFA) from Lactobacillus reuteri E81 was identified and heterologously expressed. Alignments of GTFA with other glucansucrases revealed its novelty and a putative 3D model structure was obtained. The biochemical properties of the truncated enzyme without the N-terminal variable region, GTFA-ΔN, was characterized. The Km and V max were found to be 7.5?mM and 1.49?IU/mg, respectively, and it showed optimum activities at pH 7 and at 50?°C. The GTFA-ΔN produced in vitro an α-glucan with (α1 → 3) and (α1 → 6) glycosidic linkages using sucrose as the substrate. Importantly, GTFA-ΔN synthesized DP = 9 oligosaccharides using sucrose and maltose as the donor and acceptor sugars, respectively, as detected by TLC, HPLC, LC-MS and NMR analysis. 相似文献
11.
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C(8) chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. H?ltzel, M. G. G?nzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766-2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin. 相似文献
12.
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C 8 chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. Höltzel, M. G. Gänzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766–2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin. 相似文献
13.
This study was conducted to evaluate the probiotic properties of Lactobacillus reuteri isolated from human infant feces (less than 3?months). Out of thirty-two representative L. reuteri strains isolated from the infant human feces, nine isolates (i.e. LR5, LR6, LR9, LR11, LR19, LR20, LR25, LR26 and LR34) showed survival in acid, bile and simulated stomach?Cduodenum passage conditions, indicating their high tolerance to gastric juice, duodenal juice and bile environments. The nine isolates did not show strong hydrophobic properties because the percentages of adhesion to the apolar solvent, n-hexadecane, did not exceed 40%, showing that their surfaces were rather hydrophilic. Functionality of these nine probiotic isolates was supported by their antagonistic activity and their ability to deconjugate bile salts. The safety of the nine indigenous L. reuteri isolates was supported by the absence of transferable antibiotic resistance determinants, DNase activity, gelatinase activity and hemolysis. The results obtained so far suggest that the nine strains are resistant to low pH, bile salts and duodenum juice, so they could survive when passing through the upper part of the gastrointestinal tract and fulfill their potential probiotic action in the host organism. According to these results, the L. reuteri strains isolated from human infant feces possess interesting probiotic properties that make them potentially good candidates for probiotics. 相似文献
14.
We have previously demonstrated that Lactobacillus reuteri CRL1098 soluble factors were able to reduce TNF-α production by human peripheral blood mononuclear cells. The aims of this study were to determine whether L. reuteri CRL1098 soluble factors were able to modulate in vitro the inflammatory response triggered by LPS in murine macrophages, to gain insight into the molecular mechanisms involved in the immunoregulatory effect, and to evaluate in vivo its capacity to exert anti-inflammatory actions in acute lung injury induced by LPS in mice. In vitro assays demonstrated that L. reuteri CRL1098 soluble factors significantly reduced the production of pro-inflammatory mediators (NO, COX-2, and Hsp70) and pro-inflammatory cytokines (TNF-α, and IL-6) caused by the stimulation of macrophages with LPS. NF-kB and PI3K inhibition by L. reuteri CRL1098 soluble factors contributed to these inhibitory effects. Inhibition of PI3K/Akt pathway and the diminished expression of CD14 could be involved in the immunoregulatory effect. In addition, our in vivo data proved that the LPS-induced secretion of the pro-inflammatory cytokines, inflammatory cells recruitment to the airways and inflammatory lung tissue damage were reduced in L. reuteri CRL1098 soluble factors treated mice, providing a new way to reduce excessive pulmonary inflammation. 相似文献
15.
Gene disruptions in the diploid opportunistic human fungal pathogen Candida albicans are usually created using multiple rounds of targeted integration called the 'ura-blaster' method. Resulting heterozygous and homozygous null mutants can be auxotrophic (Ura(-)) or prototrophic (Ura(+)) for uracil biosynthesis. Here we demonstrate that the Ura-status of otherwise isogenic mutants affected the adhesion of C. albicans. Moreover the effect of Ura-status on adhesion was also dependent on the null mutant background, the nature of the underlying surface and the carbon source for growth. Therefore the Ura-status is not neutral in determining adhesive properties of C. albicans mutants that are generated via the ura-blaster protocol. 相似文献
16.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2 →1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10 7) with β-(2 →1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established. 相似文献
17.
An X-prolyl-dipeptidyl peptidase has been purified from Lactobacillus sakei by ammonium sulfate fractionation and five chromatographic steps, which included hydrophobic interaction, anion-exchange chromatography, and gel filtration chromatography. This procedure resulted in a recovery yield of 7% and an increase in specificity of 737-fold. The enzyme appeared to be a dimer with a subunit molecular mass of approximately 88 kDa. Optimal activity was shown at pH 7.5 and 55°C. The enzyme was inhibited by serine proteinase inhibitors and several divalent cations (Cu 2+, Hg 2+, and Zn 2+). The enzyme almost exclusively hydrolyzed X-Pro from the N terminus of each peptide as well as fluorescent and colorimetric substrates; it also hydrolyzed X-Ala at the N terminus, albeit at lower rates. Km s for Gly-Pro- and Lys-Ala-7-amido-4-methylcoumarin were 29 and 88 μM, respectively; those for Gly-Pro- and Ala-Pro- p-nitroanilide were 192 and 50 μM, respectively. Among peptides, β-casomorphin 1-3 was hydrolyzed at the highest rates, while the relative hydrolysis of the other tested peptides was only 1 to 12%. The potential role of the purified enzyme in the proteolytic pathway by catalyzing the hydrolysis of peptide bonds involving proline is discussed. 相似文献
18.
A surface-bound aminopeptidase of Lactobacillus lactis cells was solubilized with lysozyme, and the extract was subjected to streptomycin sulfate precipitation, ammonium sulfate fractionation, chromatography on Sephadex G-100 and diethylaminoethyl-Sephadex A-50, and preparative polyacrylamide gel electrophoresis. The purified enzyme was homogeneous in disc electrophoretic analysis and consisted of a single polypeptide chain with a molecular weight of 78,000 to 81,000. The optimal pH and optimal temperature for enzyme activity were 6.2 to 7.2 and 47.5 degrees C, respectively, for l-lysine-4-nitroanilide as the substrate. The enzyme was activated by Co and Zn ions and inhibited by Cu, Hg, and Fe ions and by the metal-complexing reagents ethylenediaminetetraacetic acid, 1,10-phenanthroline, and alpha,alpha'-dipyridyl. Higher concentrations of substrate and hydrolysis products also inhibited the activity of the enzyme. The aminopeptidase had broad substrate specificity and hydrolyzed many amino acid arylamides and many peptides with unsubstituted NH(2)-terminal amino acids. 相似文献
19.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu 2+, Hg 2+, and Zn 2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment. 相似文献
20.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with beta-(2-->1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10(7)) with beta-(2-->1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established. 相似文献
|