首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The improvement of non-viral-based gene delivery systems is of prime importance for the future of gene and antisense therapies. We have previously described a peptide-based gene delivery system, MPG, derived from the fusion peptide domain of HIV-1 gp41 protein and the nuclear localisation sequence (NLS) of SV40 large T antigen. MPG forms stable non-covalent complexes with nucleic acids and improves their delivery. In the present work, we have investigated the mechanism through which MPG promotes gene delivery. We demonstrate that cell entry is independent of the endosomal pathway and that the NLS of MPG is involved in both electrostatic interactions with DNA and nuclear targeting. MPG/DNA particles interact with the nuclear import machinery, however, a mutation which affects the NLS of MPG disrupts these interactions and prevents nuclear delivery of DNA. Nevertheless, we show that this mutation yields a variant of MPG which is a powerful tool for delivery of siRNA into mammalian cells, enabling rapid release of the siRNA into the cytoplasm and promoting robust down-regulation of target mRNA. Taken together, these results support the potential of MPG-like peptides for therapeutic applications and suggest that specific variations in the sequence may yield carriers with distinct targeting features.  相似文献   

2.
Silencing gene expression by siRNAs is rapidly becoming a powerful tool for the genetic analysis of mammalian cells. However, the rapid degradation of siRNA and the limited duration of its action call for an efficient delivery technology. Accordingly, we describe here that Atelocollagen complexed with siRNA is resistant to nucleases and is efficiently transduced into cells, thereby allowing long-term gene silencing. Site-specific in vivo administration of an anti-luciferase siRNA/Atelocollagen complex reduced luciferase expression in a xenografted tumor. Furthermore, Atelocollagen-mediated transfer of siRNA in vivo showed efficient inhibition of tumor growth in an orthotopic xenograft model of a human non-seminomatous germ cell tumor. Thus, for clinical applications of siRNA, an Atelocollagen-based non-viral delivery method could be a reliable approach to achieve maximal function of siRNA in vivo.  相似文献   

3.
Silencing gene expression by small interfering RNAs (siRNAs) has become a powerful tool for the genetic analysis of many animals. However, the rapid degradation of siRNA and the limited duration of its action in vivo have called for an efficient delivery technology. Here, we describe that siRNA complexed with a synthetic collagen poly(Pro‐Hyp‐Gly) (SYCOL) is resistant to nucleases and is efficiently transferred into cells in vitro and in vivo, thereby allowing long‐term gene silencing in vivo. We found that the SYCOL‐mediated local application of siRNA targeting myostatin, coding a negative regulator of skeletal muscle growth, in mouse skeletal muscles, caused a marked increase in the muscle mass within a few weeks after application. Furthermore, in vivo administration of an anti‐luciferase siRNA/SYCOL complex partially reduced luciferase expression in xenografted tumors in vivo. These results indicate a SYCOL‐based non‐viral delivery method could be a reliable simple approach to knockdown gene expression by RNAi in vivo as well as in vitro.  相似文献   

4.
Sequence-specific gene silencing by small interfering RNA (siRNA) is an intense area of focus in the development of novel therapeutic agents. Currently, there are two major hurdles to achieving clinically effective siRNA-based therapeutics: establishment of an efficient delivery system that transfers the siRNA to the correct tissue(s); and the reduction of unintended immunotoxicity associated with unmodified siRNA. We have developed a novel liver-specific delivery system of apolipoprotein A-I-decorated cationic lipids (DTC-Apo). Here, we show that intravenous injection of an unmodified hepatitis B virus (HBV)-specific siRNA encapsulated in DTC-Apo activates the innate immune response in mice. However, 2′-O-methyl (2′-OMe) modification of siRNA sense-strand uridine or uridine/adenosine residues efficiently abrogated the immunostimulatory properties of the siRNA and also silenced viral replication. In contrast, pyrimidine modification by 2′-OMe or 2′-fluoro (2’-F) substitution failed to circumvent liposome-induced immune recognition. Our findings provide useful information for the design of chemically-modified siRNAs for in vivo applications.  相似文献   

5.
Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges.  相似文献   

6.
Breast cancer is the second leading cause of cancer-related deaths in women. Ligand-modified liposomes are used for breast tumor-specific drug delivery to improve the efficacy and reduce the side effects of chemotherapy; however, only a few liposomes with high targeting efficiency have been developed because the mono-targeting, ligand-modified liposomes are generally unable to deliver an adequate therapeutic dose. In this study, we designed biotin-glucose branched ligand-modified, dual-targeting liposomes (Bio-Glu-Lip) and evaluated their potential as a targeted chemotherapy delivery system in vitro and in vivo. When compared with the non-targeting liposome (Lip), Bio-Lip, and Glu-Lip, Bio-Glu-Lip had the highest cell uptake in 4T1 cells (3.00-fold, 1.60-fold, and 1.95-fold higher, respectively) and in MCF-7 cells (2.63-fold, 1.63-fold, and 1.85-fold higher, respectively). The subsequent cytotoxicity and in vivo assays further supported the dual-targeting liposome is a promising drug delivery carrier for the treatment of breast cancer.  相似文献   

7.
The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics.  相似文献   

8.
Delivery is a very important concern for therapeutic applications of siRNA. In this study, we have used chitosan-coated poly(isobutylcyanoacrylate) nanoparticles to deliver siRNA with a complementary sequence to the fusion oncogene ret/PTC1. By screening the mRNA junction we have selected a potent siRNA sequence able to inhibit this oncogene in a model of Papillary Thyroid Carcinoma cells. This siRNA sequence has then been validated by a shRNA approach using the same sequence. Furthermore, the high ret/PTC1 inhibition has triggered a phenotypic reversion of the transformed cells. We have designed well-defined chitosan decorated nanoparticles and succeeded to reduce their size. They have allowed to protect ret/PTC1 siRNA from in vivo degradation and leading to significant tumour growth inhibition after intratumoral administration.  相似文献   

9.
Extrahepatic delivery of small interfering RNAs (siRNAs) may have applications in the development of novel therapeutic approaches. However, reports on such approaches are limited, and the scarcity of reports concerning the systemically targeted delivery of siRNAs with effective gene silencing activity presents a challenge. We herein report for the first time the targeted delivery of CD206-targetable chemically modified mannose–siRNA (CMM–siRNA) conjugates to macrophages and dendritic cells (DCs). CMM–siRNA exhibited a strong binding ability to CD206 and selectively delivered contents to CD206-expressing macrophages and DCs. Furthermore, the conjugates demonstrated strong gene silencing ability with long-lasting effects and protein downregulation in CD206-expressing cells in vivo. These findings could broaden the use of siRNA technology, provide additional therapeutic opportunities, and establish a basis for further innovative approaches for the targeted delivery of siRNAs to not only macrophages and DCs but also other cell types.  相似文献   

10.
RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors.  相似文献   

11.
RNA interference (RNAi) has significant therapeutic promise for the genetic treatment of hepatocellular carcinoma (HCC). Targeted vectors are able to deliver small interfering RNA (siRNA) into HCC cells with high transfection efficiency and stability. The tripeptide arginine glycine aspartic acid (RGD)-modified non-viral vector, polyethylene glycol-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (RGD-PEG-g-PEI-SPION), was constructed as a magnetic resonance imaging (MRI)-visible nanocarrier for the delivery of Survivin siRNA targeting the human HCC cell line Bel-7402. The biophysical characterization of the RGD-PEG-g-PEI-SPION was performed. The RGD-modified complexes exhibited a higher transfection efficiency in transferring Survivin siRNA into Bel-7402 cells compared with a non-targeted delivery system, which resulted in more significant gene suppression at both the Survivin mRNA and protein expression levels. Then, the level of caspase-3 activation was significantly elevated, and a remarkable level of tumor cell apoptosis was induced. As a result, the tumor growth in the nude mice Bel-7402 hepatoma model was significantly inhibited. The targeting ability of the RGD-PEG-g-PEI-SPION was successfully imaged by MRI scans performed in vitro and in vivo. Our results strongly indicated that the RGD-PEG-g-PEI-SPION can potentially be used as a targeted non-viral vector for altering gene expression in the treatment of hepatocellular carcinoma and for detecting the tumor in vivo as an effective MRI probe.  相似文献   

12.
13.
Antibody-directed cell-type-specific delivery of siRNA   总被引:1,自引:0,他引:1  
Over the past four years, chemically synthesized short interfering RNA (siRNA) has become the standard tool for specific silencing of gene expression in vitro. The most difficult task in transferring this technology to an in vivo setting is to develop appropriate delivery strategies. With this aim, Song et al. recently reported the development of antibody-protamine fusion proteins as vehicles for receptor-directed delivery of siRNA. When a mixture of siRNA targeting tumor-related genes was administered in this way, tumor growth was inhibited in an engineered melanoma model, demonstrating the therapeutic potential of this technology. However, several challenges remain to be overcome before targeted gene silencing can become a reality for patients.  相似文献   

14.
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs.  相似文献   

15.
Small interfering RNA (siRNA) holds a great promise for the future of genomic medicine because of its highly sequence-specific gene silencing and universality in therapeutic target. The medical use of siRNA, however, has been severely hampered by the inherent physico-chemical properties of siRNA itself, such as low charge density, high structural stiffness and rapid enzymatic degradation; therefore, the establishment of efficient and safe siRNA delivery methodology is an essential prerequisite, particularly for systemic administration. For an efficient systemic siRNA delivery, it is a critical issue to obtain small and compact siRNA polyplexes with cationic condensing reagents including cationic polymers, because the size and surface properties of the polyplexes are major determinants for achieving desirable in vivo fate. Unfortunately, synthetic siRNA is not easily condensed with cationic polymers due to its intrinsic rigid structure and low spatial charge density. Accordingly, the loose siRNA polyplexes inevitably expose siRNA to the extracellular environment during systemic circulation, resulting in low therapeutic efficiency and poor biodistribution. In this review, we highlight the innovative approaches to increase the size of siRNA via structural modification of the siRNA itself. The attempts include several methodologies such as hybridization, chemical polymerization, and micro- and nano-structurization of siRNA. Due to its increased charge density and flexibility, the structured siRNA can produce highly condensed and homogenous polyplexes compared to the classical monomeric siRNA. As a result, stable and compact siRNA polyplexes can enhance serum stability and target delivery efficiency in vivo with desirable biodistribution. The review specifically aims to provide the recent progress of structural modification of siRNA. In addition, the article also briefly and concisely explains the improved physico-chemical properties of structured siRNA with respect to stability, condensation ability and gene silencing efficiency.  相似文献   

16.
Therapeutic oligonucleotides including siRNA and immunostimulatory ligands of Toll-like receptors (TLR) or RIG-I like helicases (RLH) are a promising novel class of drugs. They are in clinical development for a broad spectrum of applications, e.g. as adjuvants in vaccines and for the immunotherapy of cancer. Species-specific immune activation leading to cytokine release is characteristic for therapeutic oligonucleotides either as an unwanted side effect or intended pharmacology. Reliable in vitro tests designed for therapeutic oligonucleotides are therefore urgently needed in order to predict clinical efficacy and to prevent unexpected harmful effects in clinical development. To serve this purpose, we here established a human whole blood assay (WBA) that is fast and easy to perform. Its response to synthetic TLR ligands (R848: TLR7/8, LPS: TLR4) was on a comparable threshold to the more time consuming peripheral blood mononuclear cell (PBMC) based assay. By contrast, the type I IFN profile provoked by intravenous CpG-DNA (TLR9 ligand) in humans in vivo was more precisely replicated in the WBA than in stimulated PBMC. Since Heparin and EDTA, but not Hirudin, displaced oligonucleotides from their delivery agent, only Hirudin qualified as the anticoagulant to be used in the WBA. The Hirudin WBA exhibited a similar capacity as the PBMC assay to distinguish between TLR7-activating and modified non-stimulatory siRNA sequences. RNA-based immunoactivating TLR7/8- and RIG-I-ligands induced substantial amounts of IFN-α in the Hirudin-WBA dependent on delivery agent used. In conclusion, we present a human Hirudin WBA to determine therapeutic oligonucleotide-induced cytokine release during preclinical development that can readily be performed and offers a close reflection of human cytokine response in vivo.  相似文献   

17.
Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.  相似文献   

18.
Small interfering RNAs (siRNAs) are short, double-stranded RNAs that use the endogenous RNAi pathway to mediate gene silencing. Phosphorylation facilitates loading of a siRNA into the Ago2 complex and subsequent cleavage of the target mRNA. In this study, 2′, 3′ seco nucleoside modifications, which contain an acylic ribose ring and are commonly called unlocked nucleic acids (UNAs), were evaluated at all positions along the guide strand of a siRNA targeting apolipoprotein B (ApoB). UNA modifications at positions 1, 2 and 3 were detrimental to siRNA activity. UNAs at positions 1 and 2 prevented phosphorylation by Clp1 kinase, abrogated binding to Ago2, and impaired Ago2-mediated cleavage of the mRNA target. The addition of a 5′-terminal phosphate to siRNA containing a position 1 UNA restored ApoB mRNA silencing, Ago2 binding, and Ago2 mediated cleavage activity. Position 1 UNA modified siRNA containing a 5′-terminal phosphate exhibited a partial restoration of siRNA silencing activity in vivo. These data reveal the complexity of interpreting the effects of chemical modification on siRNA activity, and exemplify the importance of using multiple biochemical, cell-based and in vivo assays to rationally design chemically modified siRNA destined for therapeutic use.  相似文献   

19.

Background

RNA interference is a powerful method for the knockdown of pathologically relevant genes. The in vivo delivery of siRNAs, preferably through systemic, nonviral administration, poses the major challenge in the therapeutic application of RNAi. Small interfering RNA (siRNA) complexation with polyethylenimines (PEI) may represent a promising strategy for siRNA‐based therapies and, recently, the novel branched PEI F25‐LMW has been introduced in vitro. Vascular endothelial growth factor (VEGF) is frequently overexpressed in tumors and promotes tumor growth, angiogenesis and metastasis and thus represents an attractive target gene in tumor therapy.

Methods

In subcutaneous tumor xenograft mouse models, we established the therapeutic efficacy and safety of PEI F25‐LMW/siRNA‐mediated knockdown of VEGF. In biodistribution and siRNA quantification studies, we optimized administration strategies and, employing chemically modified siRNAs, compared the anti‐tumorigenic efficacies of: (i) PEI/siRNA‐mediated VEGF targeting; (ii) treatment with the monoclonal anti‐VEGF antibody Bevacizumab (Avastin®); and (iii) a combination of both.

Results

Efficient siRNA delivery is observed upon systemic administration, with the biodistribution being dependent on the mode of injection. Toxicity studies reveal no hepatotoxicity, proinflammatory cytokine induction or other side‐effects of PEI F25‐LMW/siRNA complexes or polyethylenimine, and tumor analyses show efficient VEGF knockdown upon siRNA delivery, leading to reduced tumor cell proliferation and angiogenesis. The determination of anti‐tumor effects reveals that, in pancreas carcinoma xenografts, single treatment with PEI/siRNA complexes or Bevacizumab is already highly efficacious, whereas, in prostate carcinoma, synergistic effects of both treatments are observed.

Conclusions

PEI F25‐LMW/siRNA complexes, which can be stored frozen as opposed to many other carriers, represent an efficient, safe and promising avenue in anti‐tumor therapy, and PEI/siRNA‐mediated, therapeutic VEGF knockdown exerts anti‐tumor effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号