首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
It was recently shown that a new class of small nuclear RNAs is encoded in introns of protein-coding genes and that they originate by processing of the pre-mRNA in which they are contained. Little is known about the mechanism and the factors involved in this new type of processing. The L1 ribosomal protein gene of Xenopus laevis is a well-suited system for studying this phenomenon: several different introns encode for two small nucleolar RNAs (snoRNAs; U16 and U18). In this paper, we analyzed the in vitro processing of these snoRNAs and showed that both are released from the pre-mRNA by a common mechanism: endonucleolytic cleavages convert the pre-mRNA into a precursor snoRNA with 5' and 3' trailer sequences. Subsequently, trimming converts the pre-snoRNAs into mature molecules. Oocyte and HeLa nuclear extracts are able to process X. laevis and human substrates in a similar manner, indicating that the processing of this class of snoRNAs relies on a common and evolutionarily conserved mechanism. In addition, we found that the cleavage activity is strongly enhanced in the presence of Mn2+ ions.  相似文献   

4.
Makarova IuA  Kramerov DA 《Genetika》2007,43(2):149-158
Small nucleolar RNAs (snoRNAs) are one of the most numerous and well-studied groups of non-protein-coding RNAs. In complex with proteins, snoRNAs perform the two most common nucleotide modifications in rRNA: 2'-O-methylation of ribose and pseudouridylation. Although the modification mechanisms and shoRNA structures are highly conserved, the snoRNA genes are surprisingly diverse in organization. In addition to genes transcribed independently, there are genes that are in introns of other genes, form clusters transcribed from a common promoter, or cluster in introns. Interestingly. one type of gene organization usually prevails in different taxa. Vertebrate snoRNAs mostly originate from introns of protein-coding genes; a small group of snoRNAs are encoded by introns of genes for noncoding RNAs.  相似文献   

5.
Small nucleolar RNAs (snoRNAs) are one of the most numerous and well-studied groups of non-protein-coding RNAs. In complex with proteins, snoRNAs perform the two most common nucleotide modifications in rRNA: 2′-OH-methylation of ribose and pseudouridylation. Although the modification mechanisms and snoRNP structures are highly conserved, the snoRNA genes are surprisingly diverse in organization. In addition to genes transcribed independently, there are genes that are in introns of other genes, form clusters transcribed from a common promoter, or clusters in introns. Interestingly, one type of gene organization usually prevails in different taxa. Vertebrate snoRNAs mostly originate from introns of protein-coding genes; a small group of snoRNAs are encoded by introns of genes for noncoding RNAs.  相似文献   

6.
7.
8.
9.
10.
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.  相似文献   

11.
Based on comparative genomics, we created a bioinformatic package for computer prediction of small nucleolar RNA (snoRNA) genes in mammalian introns. The core of our approach was the use of the Mammalian Orthologous Intron Database (MOID), which contains all known introns within the human, mouse and rat genomes. Introns from orthologous genes from these three species, that have the same position relative to the reading frame, are grouped in a special orthologous intron table. Our program SNO.pl searches for conserved snoRNA motifs within MOID and reports all cases when characteristic snoRNA-like structures are present in all three orthologous introns of human, mouse and rat sequences. Here we report an example of the SNO.pl usage for searching a particular pattern of conserved C/D-box snoRNA motifs (canonical C- and D-boxes and the 6 nt long terminal stem). In this computer analysis, we detected 57 triplets of snoRNA-like structures in three mammals. Among them were 15 triplets that represented known C/D-box snoRNA genes. Six triplets represented snoRNA genes that had only been partially characterized in the mouse genome. One case represented a novel snoRNA gene, and another three cases, putative snoRNAs. Our programs are publicly available and can be easily adapted and/or modified for searching any conserved motifs within mammalian introns.  相似文献   

12.
Multiple snoRNA gene clusters from Arabidopsis   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

13.
Topoisomerase II (TOP2) poisons interfere with the breakage/reunion reaction of TOP2 resulting in DNA cleavage. In the current studies, we show that two different classes (ATP-sensitive and -insensitive) of TOP2 poisons can be identified based on their differential sensitivity to the ATP-bound conformation of TOP2. First, in the presence of 1 mm ATP or the nonhydrolyzable analog adenosine 5'-(beta,gamma-imino)triphosphate, TOP2-mediated DNA cleavage induced by ATP-sensitive TOP2 poisons (e.g. doxorubicin, etoposide, mitoxantrone, and 4'-(9-acridinylamino)methanesulfon-m-anisidide) was 30-100-fold stimulated, whereas DNA cleavage induced by ATP-insensitive TOP2 poisons (e.g. amonafide, batracylin, and menadione) was only slightly (less than 3-fold) affected. In addition, ADP was shown to strongly antagonize TOP2-mediated DNA cleavage induced by ATP-sensitive but not ATP-insensitive TOP2 poisons. Second, C427A mutant human TOP2alpha, which exhibits reduced ATPase activity, was shown to exhibit cross-resistance to all ATP-sensitive but not ATP-insensitive TOP2 poisons. Third, using ciprofloxacin competition assay, TOP2-mediated DNA cleavage induced by ATP-sensitive but not ATP-insensitive poisons was shown to be antagonized by ciprofloxacin. These results suggest that ATP-bound TOP2 may be the specific target of ATP-sensitive TOP2 poisons. Using Lac repressor-operator complexes as roadblocks, we show that ATP-bound TOP2 acts as a circular clamp capable of entering DNA ends and sliding on unobstructed duplex DNA.  相似文献   

14.
15.
16.
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.  相似文献   

17.
Hundreds of small nuclear non-coding RNAs, including small nucleolar RNAs (snoRNAs), have been identified in different organisms, with important implications in regulating gene expression and in human diseases. However, functionalizing these nuclear RNAs in mammalian cells remains challenging, due to methodological difficulties in depleting these RNAs, especially snoRNAs. Here we report a convenient and efficient approach to deplete snoRNA, small Cajal body RNA (scaRNA) and small nuclear RNA in human and mouse cells by conventional transfection of chemically modified antisense oligonucleotides (ASOs) that promote RNaseH-mediated cleavage of target RNAs. The levels of all seven tested snoRNA/scaRNAs and four snRNAs were reduced by 80-95%, accompanied by impaired endogenous functions of the target RNAs. ASO-targeting is highly specific, without affecting expression of the host genes where snoRNAs are embedded in the introns, nor affecting the levels of snoRNA isoforms with high sequence similarities. At least five snoRNAs could be depleted simultaneously. Importantly, snoRNAs could be dramatically depleted in mice by systematic administration of the ASOs. Together, our findings provide a convenient and efficient approach to characterize nuclear non-coding RNAs in mammalian cells, and to develop antisense drugs against disease-causing non-coding RNAs.  相似文献   

18.
Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, α-neoendorphin, β-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号