首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

3.
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.Hepatitis C virus (HCV) is an important human pathogen. It mainly infects human hepatocytes, and this often leads to chronic hepatitis, cirrhosis, or hepatocarcinoma. HCV studies have been hampered for many years by the difficulty in propagating this virus in vitro. Things have recently changed with the development of a cell culture model referred to as HCVcc (34, 60, 65), which allows the study of the HCV life cycle in cell culture and facilitates studies of the interactions between HCV and the host cell.HCV is an enveloped positive-strand RNA virus belonging to the family Flaviviridae (35). The viral genome contains a single open reading frame, which is flanked by two noncoding regions that are required for translation and replication. All viral proteins that are produced after proteolytic processing of the initially synthesized polyprotein are membrane associated (15, 43). This reflects the fact that virtually all steps of the viral life cycle occur in close association with cellular membranes.Interactions of HCV with cell membranes begin during entry. Several receptors, coreceptors, and other entry factors have been discovered over the years, which link HCV entry to specialized domains of the plasma membrane, such as tetraspanin-enriched microdomains and tight junctions (8, 16, 59). The internalization of the viral particle occurs by clathrin-mediated endocytosis (5, 40). The fusion of the viral envelope with the membrane of an acidic endosome likely mediates the transfer of the viral genome to the cytosol of the cell (5, 40, 57). However, little is known regarding the pre- and postfusion intracellular transport steps of entering viruses in the endocytic pathway.HCV RNA replication is also associated with cellular membranes. Replication begins with the translation of the genomic RNA of an incoming virus. This leads to the production of viral proteins, which in turn initiate the actual replication of the viral RNA. Mechanisms regulating the transition from the translation of the genomic RNA to its replication are not yet known. All viral proteins are not involved in RNA replication. Studies performed with subgenomic replicons demonstrated that proteins NS3-4A, NS4B, NS5A, and NS5B are necessary and sufficient for replication (6, 27, 37). RNA replication proceeds through the synthesis of a cRNA strand (negative strand), catalyzed by the RNA-dependent RNA polymerase activity of NS5B, which is then used as a template for the synthesis of new positive strands.Electron microscopy studies using a subgenomic replicon model suggested that replication takes place in membrane structures made of small vesicles, referred to as “membranous webs,” which are induced by the virus (26). Membranous webs are detectable not only in cells carrying subgenomic replicons but also in infected cells (50). They appear to be associated with the endoplasmic reticulum (ER) (26). In addition to the membranous webs, a second type of ER-associated replicase that is smaller and more mobile has recently been described (63). Cellular mechanisms leading to these membrane alterations are still poorly understood. In cells replicating and secreting infectious viruses effectively, the situation appears to be even more complex, since replicase components appear to be, at least in part, associated with cytoplasmic lipid droplets (41, 50, 56). This association depends on the capsid protein (41) and may reflect a coupling between replication and assembly. Indeed, HCV assembly and secretion show some similarities with very-low-density lipoprotein (VLDL) maturation and secretion (24, 64).Our knowledge of the cellular membrane mechanisms involved in the HCV life cycle is still limited. The expression of NS4B alone induces membrane alterations that are reminiscent of membranous webs (19). However, cellular factors that participate in this process are still unknown. On the other hand, several cellular proteins potentially involved in the HCV life cycle have been identified through their interactions with viral proteins. For some of these proteins, a functional role in infection was recently confirmed using RNA interference (48). It is very likely that other cellular factors critical to HCV infection have yet to be identified.To gain more insight into cellular mechanisms underlying HCV infection, we made use of brefeldin A (BFA), a macrocyclic lactone of fungal origin that exhibits a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways (30). BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARFs). ARFs are small GTP-binding proteins of the Ras superfamily. They function as regulators of vesicular traffic, actin remodeling, and phospholipid metabolism by recruiting effectors to membranes. BFA does not actually interfere directly with ARF GTPases but rather interferes with their activation by regulators known as guanine nucleotide exchange factors (GEFs) (14, 25). We now report the identification of an ARF GEF as a cellular BFA-sensitive factor that is required for HCV replication.  相似文献   

4.
Norwalk virus (NV) is a prototype strain of the noroviruses (family Caliciviridae) that have emerged as major causes of acute gastroenteritis worldwide. I have developed NV replicon systems using reporter proteins such as a neomycin-resistant protein (NV replicon-bearing cells) and a green fluorescent protein (pNV-GFP) and demonstrated that these systems were excellent tools to study virus replication in cell culture. In the present study, I first performed DNA microarray analysis of the replicon-bearing cells to identify cellular factors associated with NV replication. The analysis demonstrated that genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (P < 0.001) changed by the gene ontology analysis. Among genes in the cholesterol pathways, I found that mRNA levels of hydroxymethylglutaryl-coenzyme A (HMG-CoA) synthase, squalene epoxidase, and acyl-CoA:cholesterol acyltransferase (ACAT), ACAT2, small heterodimer partner, and low-density lipoprotein receptor (LDLR)-related proteins were significantly changed in the cells. I also found that the inhibition of cholesterol biosynthesis using statins (an HMG-CoA reductase inhibitor) significantly increased the levels of NV proteins and RNA, whereas inhibitors of ACAT significantly reduced the replication of NV in replicon-bearing cells. Up- or downregulation of virus replication with these agents significantly correlated with the mRNA level of LDLR in replicon-bearing cells. Finally, I found that the expression of LDLR promoted NV replication in trans by transfection study with pNV-GFP. I conclude that the cholesterol pathways such as LDLR expression and ACAT activity may be crucial in the replication of noroviruses in cells, which may provide potential therapeutic targets for viral infection.Human noroviruses are now the leading cause of food- or waterborne gastroenteritis illnesses responsible for more than 60% of outbreaks (10). It has been estimated that noroviruses cause 23 million cases of illness, 50,000 hospitalizations, and 300 deaths each year in the United States alone (19). Molecular epidemiological studies have confirmed a global distribution of these viruses (13). The major public health concern with human noroviruses is their ability to cause large outbreaks in group settings such as schools, restaurants, summer camps, military units, hospitals, nursing homes, and cruise ships. Human noroviruses are currently classified as NIAID category B priority pathogens (category B bioterrorism agents). Noroviruses generally cause mild to moderate gastroenteritis, but the disease can be severe to life-threatening in the young, the elderly, and immunocompromised patients. During the last decade, noroviruses have gained media attention for causing large-scale outbreaks of gastroenteritis on cruise ships, in nursing homes, etc. Although noroviruses do not multiply in food or water, they can cause large outbreaks because as few as 10 to 100 virions are sufficient to cause illness in a healthy adult (12). Recent reports of noroviral gastroenteritis outbreaks among hurricane Katrina evacuees underscores the importance of preventive and therapeutic measures for noroviruses to promote public health (32). However, no vaccines or antivirals are currently available for the prevention or treatment of norovirus disease in humans, which is largely due to the absence of a cell culture system for human noroviruses. The recent development of replicon-bearing cells for Norwalk virus (NV) (7) has made possible the study of NV replication in cells and the discovery of antivirals. We recently demonstrated that the system provides an excellent platform for screening small molecules for antivirals (3, 7). We also reported another NV replicon system with reporter genes (green fluorescent protein [GFP] or luciferase) to study virus replication (4).As a component of membrane structures and a precursor for the steroid hormones and bile acids, cholesterol is one of the most essential biological molecules in the body (8). Cholesterol levels are maintained by controlling both de novo synthesis (major) and dietary uptake (minor) of cholesterol (8). De novo synthesis of cholesterol is subject to complex regulatory controls by various enzymes such as 3-hydroxy-3-methyl glutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA:cholesterol acyltransferase (ACAT) (1, 8, 21). The synthesis of bile acids from cholesterol is also tightly controlled and represents an important factor the cholesterol homeostasis (14, 22, 23). In the present study, I first performed DNA microarray analysis of replicon-bearing cells to identify cellular factors associated with NV replication. Analysis showed genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (P < 0.001) changed by the gene ontology analysis. Because it has been shown that bile acids are essential for the replication of porcine enteric calicivirus (PEC) in cells (6) and important natural modulators of cholesterol pathways, I was particularly interested in potential regulation genes in the cholesterol pathways. I demonstrate here that the modulation of the cholesterol pathways via inhibitors of HMG-CoA reductase or ACAT led to either up- or downregulation of the replication of NV. I also show that the expression level of low-density lipoprotein receptor (LDLR) was positively correlated with NV replication in cells. These studies suggest that the cholesterol pathway is crucial for norovirus replication and provide potential therapeutic targets for noroviral infection.  相似文献   

5.
6.
The endosomal sorting complex required for transport (ESCRT) machinery controls the incorporation of cargo into intraluminal vesicles of multivesicular bodies. This machinery is used during envelopment of many RNA viruses and some DNA viruses, including herpes simplex virus type 1. Other viruses mature independent of ESCRT components, instead relying on the intrinsic behavior of viral matrix and envelope proteins to drive envelopment. Human cytomegalovirus (HCMV) maturation has been reported to proceed independent of ESCRT components (A. Fraile-Ramos et al. Cell. Microbiol. 9:2955-2967, 2007). A virus complementation assay was used to evaluate the role of dominant-negative (DN) form of a key ESCRT ATPase, vacuolar protein sorting-4 (Vps4DN) in HCMV replication. Vps4DN specifically inhibited viral replication, whereas wild-type-Vps4 had no effect. In addition, a DN form of charged multivesicular body protein 1 (CHMP1DN) was found to inhibit HCMV. In contrast, DN tumor susceptibility gene-101 (Tsg101DN) did not impact viral replication despite the presence of a PTAP motif within pp150/ppUL32, an essential tegument protein involved in the last steps of viral maturation and release. Either Vps4DN or CHMP1DN blocked viral replication at a step after the accumulation of late viral proteins, suggesting that both are involved in maturation. Both Vps4A and CHMP1A localized in the vicinity of viral cytoplasmic assembly compartments, sites of viral maturation that develop in CMV-infected cells. Thus, ESCRT machinery is involved in the final steps of HCMV replication.Cellular endosomal sorting complex required for transport (ESCRT) machinery controls the evolutionarily conserved process (33) of membrane budding that is normally a component of cytokinesis (6, 46), endosome sorting and multivesicular body (MVB) formation (28). After the initial characterization in retroviruses, many enveloped viruses have been shown to rely on this machinery during envelopment and release from cells (1, 18, 35, 40, 47, 69). Other viruses, such as influenza virus, mature independent of ESCRT machinery and are believed to use an alternative virus-intrinsic pathway (7). The core of the ESCRT machinery consists of five multiprotein complexes (ESCRT-0, -I, -II, and -III and Vps4-Vta1) (27). Vacuolar protein sorting-4 (Vps4) is a critical ATPase that functions downstream of most ESCRT components. Based on sensitivity to dominant-negative (DN) inhibitors of protein function, replication of several RNA viruses, as well as of the DNA virus herpes simplex virus type 1 (HSV-1) (5, 10), have been shown to rely on Vps4 in a manner that is analogous to the formation of MVBs (endosomal compartments containing intraluminal vesicles) (10, 45). Evidence based exclusively on small interfering RNA (siRNA) methods suggested cytomegalovirus (CMV) maturation was independent of ESCRT components, although the maturation of this virus remained MVB associated (16).ESCRT machinery facilitates envelopment and release at cytoplasmic membranes and recruits cargo for sorting via any of three alternative pathways that converge on a Vps4-dependent downstream step: (i) a tumor susceptibility gene-101 (Tsg101)-dependent pathway, (ii) an apoptosis linked gene-2 interacting protein X (ALIX)-dependent pathway, and (iii) a pathway that relies on a subset of Nedd4-like HECT E3 ubiquitin ligases (35). The involvement of ESCRT in viral envelopment and egress was first observed in human immunodeficiency virus (HIV) (18, 19, 40, 60) and has been extended to equine infectious anemia virus (34, 40, 52, 60), Rous sarcoma virus (29, 70, 71), Mason-Pfizer monkey virus (20, 72), rabies virus (24), Ebola virus (23), hepatitis B virus (68), vaccinia virus (25), HSV-1 (5, 10), and several other RNA and DNA viruses (7). Structural proteins in most of these viruses carry late (L) domains characterized by conserved amino acid motifs (PTAP, PPXY, and YXXL) that mediate protein-protein interactions and facilitate recruitment of ESCRT components to facilitate virus budding. The introduction of mutations in these motifs leads to defects in viral maturation and release from cells (40).Vps4 controls the release of ESCRT complexes from membranes (18, 40). Inhibition of Vps4A and Vps4B using Vps4ADN reduces levels of viral maturation mediated by L domains (47). For this reason, inhibition by a Vps4DN is considered the gold standard test to establish the role of ESCRT machinery in maturation of any virus (7). Tsg101, a component of ESCRT-I, normally functions to deliver ubiquitinated transmembrane proteins to MVBs (35). HIV-1 p6 Gag PTAP domain interacts with Tsg101 (18) and directs viral cores (capsids) to sites of viral envelopment (39). Upon disruption of HIV-1 PTAP domain, particle release becomes dependent on auxiliary factors, including an ALIX-binding YXXL domain within p6 Gag (60). A minimal amino-terminal L domain of Tsg101 functions as a DN inhibitor of PTAP-mediated viral budding without inhibiting Tsg101-independent PPXY- or YXXL-dependent pathways (40). The murine leukemia virus PPXY domain recruits a subset of Nedd4-like HECT E3 ubiquitin ligases (WWP1, WWP2, and Itch) (36) that in turn recruit ESCRT-III components (35). The YXXL L domain binds to the cellular protein ALIX (60). ALIX binds to Tsg101 (38) and also with ESCRT-III protein CHMP-4B (60), thus linking ESCRT-I and ESCRT-III. Green fluorescent protein (GFP)-, red fluorescent protein, or yellow fluorescent protein (YFP)-fused CHMPs are general DN inhibitors of all natural CHMP-associated activities and cause the formation of aberrant endosomal compartments that sequester ESCRT complexes (26, 31, 60). Through the use of these DN constructs, the recruitment and assembly of ESCRT components can be inhibited to specifically disrupt different steps of the ESCRT pathway.The best evidence supporting involvement of ESCRT machinery in the life cycle of herpesviruses comes from the inhibition of HSV-1 envelopment by Vps4DN (10), as well as by CHMP3DN (5), together with the association of HSV-1 maturation with MVB. It was recently reported that HHV-6 also induces MVB formation that controls viral egress via an exosomal release pathway (45). After losing primary envelope acquired at the nuclear membrane, Human CMV (HCMV) undergoes a secondary, or final, envelopment step within a cytoplasmic assembly compartments (AC) (59). Secondary envelopment is thought to occur within early endosomal compartments based on diverse observations: (i) purified virions and dense bodies have a lipid composition that is similar to this compartment (64); (ii) the AC of HCMV-infected fibroblasts contain endosomal markers (11); and (iii) a number of HCMV envelope proteins, including US28 (14), UL33, US27 (15), and gB (9), colocalize with endosomal markers in infected cells. A model of HCMV egress via early endosomes has been proposed (11).The approach that we have used here employed human foreskin fibroblasts (HFs) and restricted viral replication to cells that expressed the DN or wild-type (WT) component of the ESCRT pathway by including a requirement that transfected cells complement replication of virus. Confirming expression of both DN and complementing protein in transfected cells by epifluorescence microscopy ensured that an overwhelming majority of cells coexpressed these proteins. The results were scored as inhibition of viral spread to adjacent cells as well as demonstration of late gene expression in the transfected and/or infected cell. Viral progeny is released within 48 to 72 h from CMV-infected cells (44), reducing the likelihood that nonspecific or long-term toxicity of DN-ESCRT proteins would impact our analysis. This assay has been effectively used earlier for both immediate-early gene (54) and late gene (2, 62) mutants, and similar complementation assay results have been reported in diverse systems (8, 49, 73). This assay further provided an opportunity to determine when inhibition occurred relative to the viral replication cycle. Our data implicate ESCRT machinery late during HCMV maturation, which is consistent with a role in secondary envelopment and release.  相似文献   

7.
8.
9.
10.
There are two protein primers involved in picornavirus RNA replication, VPg, the viral protein of the genome, and VPgpUpUOH. A cis-acting replication element (CRE) within the open reading frame of poliovirus (PV) RNA allows the viral RNA-dependent RNA polymerase 3DPol to catalyze the conversion of VPg into VPgpUpUOH. In this study, we used preinitiation RNA replication complexes (PIRCs) to determine when CRE-dependent VPg uridylylation occurs relative to the sequential synthesis of negative- and positive-strand RNA. Guanidine HCl (2 mM), a reversible inhibitor of PV 2CATPase, prevented CRE-dependent VPgpUpUOH synthesis and the initiation of negative-strand RNA synthesis. VPgpUpUOH and nascent negative-strand RNA molecules were synthesized coincident in time following the removal of guanidine, consistent with PV RNA functioning simultaneously as a template for CRE-dependent VPgpUpUOH synthesis and negative-strand RNA synthesis. The amounts of [32P]UMP incorporated into VPgpUpUOH and negative-strand RNA products indicated that 100 to 400 VPgpUpUOH molecules were made coincident in time with each negative-strand RNA. 3′-dCTP inhibited the elongation of nascent negative-strand RNAs without affecting CRE-dependent VPg uridylylation. A 3′ nontranslated region mutation which inhibited negative-strand RNA synthesis did not inhibit CRE-dependent VPg uridylylation. Together, the data implicate 2CATPase in the mechanisms whereby PV RNA functions as a template for reiterative CRE-dependent VPg uridylylation before and during negative-strand RNA synthesis.A common feature of positive-strand RNA viruses is the asymmetric replication of viral RNA. Poliovirus (PV) RNA replication has been studied extensively; however, it remains to be determined exactly how the synthesis of negative-strand RNA and that of positive-strand RNA are mechanistically distinct, culminating in the synthesis of greater amounts of positive-strand than negative-strand RNA (2). A cis-acting replication element (CRE) within the 2C open reading frame of PV RNA functions as a template for the conversion of the viral protein of the genome (VPg) into VPgpUpUOH (24, 26, 37). 3D polymerase (3DPol), in concert with other viral proteins, catalyzes the conversion of VPg into VPgpUpUOH on CRE RNA templates (22). It remains to be determined whether the tyrosine hydroxyl of VPg (14, 20, 21), the 3′ hydroxyl of VPgpUpUOH (22, 23, 43), or both (38) are used to prime negative-strand RNA synthesis. It would be informative to know whether VPg is converted into VPgpUpUOH before, during, and/or after the initiation of viral negative-strand RNA synthesis. Conversion of VPg into VPgpUpUOH before the initiation of negative-strand RNA synthesis would be consistent with the possibility that it primes the initiation of negative-strand RNA synthesis. Conversely, if VPg were not converted into VPgpUpUOH until after the initiation of negative-strand RNA synthesis, VPgpUpUOH could not possibly participate in the initiation of negative-strand RNA synthesis. Also, because multiple copies of VPgpUpUOH are necessary to prime reiterative initiation of positive-strand RNA synthesis (35), VPg is most likely converted into abundant amounts of VPgpUpUOH before the initiation of positive-strand RNA synthesis.PV preinitiation RNA replication complexes (PIRCs) were used in this study to examine when VPg is converted into VPgpUpUOH. PIRCs assemble and accumulate when PV mRNA is translated in reaction mixtures containing cytoplasmic extracts from uninfected HeLa cells and 2 mM guanidine HCl, a reversible inhibitor of viral RNA replication (5). The viral replication proteins expressed from the viral mRNA interact with lipid membranes in the cytoplasmic extracts to form RNA replication complexes (RCs) similar to those in infected cells (12). PIRCs convert VPg into VPgpUpUOH and initiate viral RNA replication when they are isolated from reaction mixtures containing guanidine and resuspended in reaction mixtures lacking guanidine (6, 19). Guanidine HCl functions as a reversible inhibitor of PV RNA replication, both in cells (11) and in cell-free translation-replication reactions (6). In cells, PV RNA RCs fail to immediately initiate RNA replication following the removal of guanidine HCl (11). Rather, PV RCs formed in the presence of guanidine in cells appear to be translocated to a region of the cytoplasm where the RCs and their contents may be recycled and/or destroyed (11), possibly by autophagic vesicles (17). Recycling and/or destruction of RCs by autophagic vesicles would preclude their function upon the removal of guanidine. PIRCs, which form in the presence of guanidine during the translation of PV mRNA in cytoplasmic extracts of HeLa cells, immediately initiate both negative-strand RNA synthesis and CRE-dependent VPg uridylylation upon the removal of guanidine (6, 19). Viral RNA replication and VPgpUpUOH synthesis are monitored by the incorporation of radiolabeled UTP (19-21). It is important to note that RNA replication in the context of PIRCs is artificial in that the PIRCs are stalled with guanidine and purified and then the guanidine block is removed. Despite this artificiality, the mechanisms of RNA replication within PIRCs appear to reliably represent the mechanisms of RNA replication in cells. There are several advantageous features of the PIRC experimental system: viral RNA replication is synchronous and sequential, with negative-strand RNA being made before positive-strand RNA (6); viral RNA replication is asymmetric, with an excess of positive-strand RNA being made from each negative-strand template; VPg is converted into VPgpUpUOH in a CRE-dependent manner (20, 21); and the reaction conditions, including nucleoside triphosphate concentrations, are easily manipulated (38). Importantly, PIRCs contain all of the viral proteins associated with RNA replication and RNA replication by PIRCs faithfully mimics the asymmetric replication of PV RNA observed in cells.PV protein 2C, the target of guanidine HCl (30), is a critical but poorly understood component of PIRCs and RNA RCs in cells. PV protein 2C has an NH-terminal amphipathic helix which interacts with cellular membranes (40), a central ATPase domain where guanidine-resistant and guanidine-dependent mutations arise (31, 32), a cysteine-rich zinc binding motif (29), and a COOH-terminal RNA binding domain (34) which appears to work in concert with amino acid residues at the NH terminus to bind RNA. 2CATPase can oligomerize (1, 41), anchoring viral replication proteins and RNA templates within membranous RCs (4). The ability of guanidine HCl to reversibly inhibit both CRE-dependent VPg uridylylation and negative-strand RNA synthesis implicates 2CATPase in the mechanisms by which PV RNA functions coordinately as a template for both RNA replication and CRE-dependent VPgpUpUOH synthesis (19, 21).In this study, we found that VPg was converted into VPgpUpUOH before and during negative-strand RNA synthesis and that 2CATPase activity, in the context of membranous PIRCs, allowed PV RNA to function simultaneously as a template for CRE-dependent VPg uridylylation and as a template for negative-strand RNA synthesis. We discuss how picornaviruses coordinate the synthesis of nucleotidylylated protein primers with other steps of viral RNA replication.  相似文献   

11.
12.
13.
14.
Cytosolic chaperones are a diverse group of ubiquitous proteins that play central roles in multiple processes within the cell, including protein translation, folding, intracellular trafficking, and quality control. These cellular proteins have also been implicated in the replication of numerous viruses, although the full extent of their involvement in viral replication is unknown. We have previously shown that the heat shock protein 40 (hsp40) chaperone encoded by the yeast YDJ1 gene facilitates RNA replication of flock house virus (FHV), a well-studied and versatile positive-sense RNA model virus. To further explore the roles of chaperones in FHV replication, we examined a panel of 30 yeast strains with single deletions of cytosolic proteins that have known or hypothesized chaperone activity. We found that the majority of cytosolic chaperone deletions had no impact on FHV RNA accumulation, with the notable exception of J-domain-containing hsp40 chaperones, where deletion of APJ1 reduced FHV RNA accumulation by 60%, while deletion of ZUO1, JJJ1, or JJJ2 markedly increased FHV RNA accumulation, by 4- to 40-fold. Further studies using cross complementation and double-deletion strains revealed that the contrasting effects of J domain proteins were reproduced by altering expression of the major cytosolic hsp70s encoded by the SSA and SSB families and were mediated in part by divergent effects on FHV RNA polymerase synthesis. These results identify hsp70 chaperones as critical regulators of FHV RNA replication and indicate that cellular chaperones can have both positive and negative regulatory effects on virus replication.The compact genomes of viruses relative to those of other infectious agents restrict their ability to encode all proteins required to complete their replication cycles. To circumvent this limitation, viruses often utilize cellular factors or processes to complete essential steps in replication. One group of cellular proteins frequently targeted by viruses are cellular chaperones, which include a diverse set of heat shock proteins (hsps) that normally facilitate cellular protein translation, folding, trafficking, and degradation (18, 64). The connection between viruses and cellular chaperones was originally identified in bacteria, where the Escherichia coli hsp40 and hsp70 homologues, encoded by dnaJ and dnaK, respectively, were identified as bacterial genes essential for bacteriophage λ DNA replication (62). Research over the past 30 years has further revealed the importance of cellular chaperones in viral replication, such that the list of virus-hsp connections is now quite extensive and includes viruses from numerous families with diverse genome structures (4, 6, 7, 16, 19, 20, 23, 25, 40, 41, 44, 51, 54, 60). These studies have demonstrated the importance of cellular chaperones in multiple steps of the viral life cycle, including entry, viral protein translation, genome replication, encapsidation, and virion release. However, the list of virus-hsp connections is likely incomplete. Further studies to explore this particular host-pathogen interaction will shed light on virus replication mechanisms and pathogenesis, and potentially highlight targets for novel antiviral agents.To study the role of cellular chaperones in the genome replication of positive-sense RNA viruses, we use flock house virus (FHV), a natural insect pathogen and well-studied member of the Nodaviridae family. The FHV life cycle shares many common features with other positive-sense RNA viruses, including the membrane-specific targeting and assembly of functional RNA replication complexes (37, 38), the exploitation of various cellular processes and host factors for viral replication (5, 23, 60), and the induction of large-scale membrane rearrangements (24, 28, 38, 39). FHV virions contain a copackaged bipartite genome consisting of RNA1 (3.1 kb) and RNA2 (1.4 kb), which encode protein A, the viral RNA-dependent RNA polymerase, and the structural capsid protein precursor, respectively (1). During active genome replication, FHV produces a subgenomic RNA3 (0.4 kb), which encodes the RNA interference inhibitor protein B2 (12, 29, 32). These viral characteristics make FHV an excellent model system to study many aspects of positive-sense RNA virus biology.In addition to the benefits of a simple genome, FHV is able to establish robust RNA replication in a wide variety of genetically tractable eukaryotic hosts, including Drosophila melanogaster (38), Caenorhabditis elegans (32), and Saccharomyces cerevisiae (46). The budding yeast S. cerevisiae has been an exceptionally useful model host to study the mechanisms of viral RNA replication complex assembly and function with FHV (31, 37, 39, 45, 53, 55, 56, 60) as well as other positive-sense RNA viruses (11). The facile genetics of S. cerevisiae, along with the vast array of well-defined cellular and molecular tools and techniques, make it an ideal eukaryotic host for the identification of cellular factors required for positive-sense RNA virus replication. Furthermore, readily available yeast libraries with deletions and regulated expression of individual proteins have led to the completion of several high-throughput screens to provide a global survey of host factors that impact virus replication (26, 42, 52). An alternative approach with these yeast libraries that reduces the inherently high false-negative rates associated with high-throughput screens is to focus on a select set of host genes associated with a particular cellular pathway, process, or location previously implicated in virus replication.We have utilized such a targeted approach and focused on examining the impact of cytosolic chaperones on FHV RNA replication. Previously, we have shown that the cellular chaperone hsp90 facilitates protein A synthesis in Drosophila cells (5, 23), and the hsp40 encoded by the yeast YDJ1 gene facilitates FHV RNA replication in yeast, in part through effects on both protein A accumulation and function (60). In this report, we further extend these observations by examining FHV RNA accumulation in a panel of yeast strains with deletions of known or hypothesized cytosolic chaperones. We demonstrate that cytosolic chaperones can have either suppressive or enhancing effects on FHV RNA accumulation. In particular, related hsp70 members encoded by the SSA and SSB yeast chaperone families have marked and dramatically divergent effects on both genomic and subgenomic RNA accumulation and viral polymerase synthesis. These results highlight the complexities of the host-pathogen interactions that influence positive-sense RNA virus replication and identify the hsp70 family of cytosolic chaperones as key regulators of FHV replication.  相似文献   

15.
16.
Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer''s patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.In marked contrast to pathogenic human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections of humans and macaques, which are characterized by the constant progression to AIDS in a variable time frame (26), African monkey species naturally infected with SIV are generally spared from any signs of disease (reviewed in references 53 and 71).There are currently three animal models of SIV infection in natural hosts: SIVagm infection of African green monkeys (AGMs), SIVsmm infection of sooty mangabeys, and SIVmnd-1 and SIVmnd-2 infection of mandrills (53, 71). SIV infection in natural hosts is characterized by the following: (i) active viral replication, with set-point viral loads (VLs) similar to or even higher than those found in pathogenic infections (44-46, 49, 50, 52, 61-63); (ii) transient depletion of peripheral CD4+ T cells during primary infection, which rebound to preinfection levels during chronic infection (12, 30, 44-46, 49, 62); (iii) significant CD4+ T-cell depletion in the intestine, which can be partially restored during chronic infection in spite of significant viral replication (21, 48); (iv) low levels of CD4+ CCR5+ cells in blood and tissues (47); (v) transient and moderate increases in immune activation and T-cell proliferation during acute infection, with a return to baseline levels during the chronic phase (44-46, 49, 50, 52, 61-63), as a result of an anti-inflammatory milieu which is rapidly established after infection (14, 30); and (vi) no significant increase in CD4+ T-cell apoptosis during either acute or chronic infection (37, 48), thus avoiding enteropathy and microbial translocation, which control excessive immune activation and prevent disease progression by allowing CD4+ T-cell recovery in the presence of high VLs (21, 48). Hence, the current view is that the main reason behind the lack of disease progression in natural African hosts lies in a better adaptation of the host in response to the highly replicating virus. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection may provide important clues for understanding the pathogenesis of HIV infection (53, 71).To date, it is still unknown whether or not immune responses are responsible for the lack of disease progression in natural hosts, since data are scarce. Studies of cellular immune responses are significantly more limited than is the case with pathogenic infection, and although not always in agreement (3, 13, 28, 29, 73, 76), their convergence point is that cellular immune responses are not essentially superior to those observed in pathogenic infections (3, 13, 28, 29, 73, 76). This observation is not surprising in the context of the high viral replication in natural hosts. Data are even scarcer on the role of humoral immune responses in the control of disease progression in natural hosts. However, several studies reported that anti-SIV antibody titers are lower in SIV infections of natural hosts, with a lack of anti-Gag responses being characteristic of natural SIV infections in African nonhuman primates (1, 6, 24, 25, 42, 43, 71). Because the viral replication in SIVagm-infected AGMs is of the same magnitude or higher than that in pathogenic infections of rhesus macaques (RMs), it has been hypothesized that these high VLs may be a consequence of the lower antibody titers. Moreover, a recent study has also shown that B cells in lymph nodes (LNs) of AGMs are activated at an earlier time point than is the case for SIVmac251-infected RMs, which implies that humoral immune responses may be important in controlling SIV replication in the natural hosts (9). Conversely, it has been shown that passively transferring immunoglobulins from animals naturally infected with SIVagm prior to infection with a low dose of SIVagm did not prevent infection in AGMs (42, 60), which is in striking contrast to results in studies of pathogenic infections, which convincingly demonstrated with animal models that intravenously administered or topically applied antibodies can protect macaques against intravenous or mucosal simian-human immunodeficiency virus challenge (34-36, 54, 72).Previous CD20+ B-cell-depletion studies during pathogenic RM infections have indicated that humoral immune responses may be important for controlling both the postpeak VL and disease progression (38, 57). However, these studies used strains that are highly resistant to neutralization (SIVmac251 and SIVmac239), making it difficult to assess the role that antibodies have in controlling SIV replication and disease progression. Moreover, our recent results suggested a limited impact of humoral immune responses in controlling replication of a neutralization-sensitive SIVsmm strain in rhesus macaques (18).To investigate the effect that CD20+ B cells and antibodies have on SIV replication in natural hosts, we have depleted CD20+ B cells in vivo in AGMs infected with SIVagm.sab92018. We assessed the impact of humoral immune responses on the control of viral replication and other immunological parameters, and we report that ablating humoral immune responses in SIVagm-infected AGMs does not significantly alter the course of virus replication or disease progression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号