首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The macrolide antibiotic rapamycin inhibits the mammalian target of rapamycin protein (mTOR) kinase resulting in the global inhibition of cap-dependent protein synthesis, a blockade in ribosome component biosynthesis, and G1 cell cycle arrest. G1 arrest may occur by inhibiting the protein synthesis of critical factors required for cell cycle progression. Hypersensitivity to mTOR inhibitors has been demonstrated in cells having elevated levels of AKT kinase activity, whereas cells containing quiescent AKT activity are relatively resistant. Our previous data suggest that low AKT activity induces resistance by allowing continued cap-independent protein synthesis of cyclin D1 and c-Myc proteins. In support of this notion, the current study demonstrates that the human cyclin D1 mRNA 5' untranslated region contains an internal ribosome entry site (IRES) and that both this IRES and the c-myc IRES are negatively regulated by AKT activity. Furthermore, we show that cyclin D1 and c-myc IRES function is enhanced following exposure to rapamycin and requires both p38 MAPK and RAF/MEK/ERK signaling, as specific inhibitors of these pathways reduce IRES-mediated translation and protein levels under conditions of quiescent AKT activity. Thus, continued IRES-mediated translation initiation may permit cell cycle progression upon mTOR inactivation in cells in which AKT kinase activity is relatively low.  相似文献   

3.
The relative activity of the AKT kinase has been demonstrated to be a major determinant of sensitivity of tumor cells to mammalian target of rapamycin (mTOR) complex 1 inhibitors. Our previous studies have shown that the multifunctional RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates a salvage pathway facilitating internal ribosome entry site (IRES)-dependent mRNA translation of critical cellular determinants in an AKT-dependent manner following mTOR inhibitor exposure. This pathway functions by stimulating IRES-dependent translation in cells with relatively quiescent AKT, resulting in resistance to rapamycin. However, the pathway is repressed in cells with elevated AKT activity, rendering them sensitive to rapamycin-induced G(1) arrest as a result of the inhibition of global eIF-4E-mediated translation. AKT phosphorylation of hnRNP A1 at serine 199 has been demonstrated to inhibit IRES-mediated translation initiation. Here we describe a phosphomimetic mutant of hnRNP A1 (S199E) that is capable of binding both the cyclin D1 and c-MYC IRES RNAs in vitro but lacks nucleic acid annealing activity, resulting in inhibition of IRES function in dicistronic mRNA reporter assays. Utilizing cells in which AKT is conditionally active, we demonstrate that overexpression of this mutant renders quiescent AKT-containing cells sensitive to rapamycin in vitro and in xenografts. We also demonstrate that activated AKT is strongly correlated with elevated Ser(P)(199)-hnRNP A1 levels in a panel of 22 glioblastomas. These data demonstrate that the phosphorylation status of hnRNP A1 serine 199 regulates the AKT-dependent sensitivity of cells to rapamycin and functionally links IRES-transacting factor annealing activity to cellular responses to mTOR complex 1 inhibition.  相似文献   

4.
The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway promotes melanoma tumor growth and survival while suppressing autophagy, a catabolic process through which cells collect and recycle cellular components to sustain energy homeostasis in starvation. Conversely, inhibitors of the PI3K/AKT/mTOR pathway, in particular the mTOR inhibitor temsirolimus (CCI-779), induce autophagy, which can promote tumor survival and thus, these agents potentially limit their own efficacy. We hypothesized that inhibition of autophagy in combination with mTOR inhibition would block this tumor survival mechanism and hence improve the cytotoxicity of mTOR inhibitors in melanoma. Here we found that melanoma cell lines of multiple genotypes exhibit high basal levels of autophagy. Knockdown of expression of the essential autophagy gene product ATG7 resulted in cell death, indicating that survival of melanoma cells is autophagy-dependent. We also found that the lysosomotropic agent and autophagy inhibitor hydroxychloroquine (HCQ) synergizes with CCI-779 and led to melanoma cell death via apoptosis. Combination treatment with CCI-779 and HCQ suppressed melanoma growth and induced cell death both in 3-dimensional (3D) spheroid cultures and in tumor xenografts. These data suggest that coordinate inhibition of the mTOR and autophagy pathways promotes apoptosis and could be a new therapeutic paradigm for the treatment of melanoma.  相似文献   

5.
Wang Z  Liu T  Chen Y  Zhang X  Liu M  Fu H  Liu D 《DNA and cell biology》2012,31(6):1095-1099
The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase. It plays an evolutionarily conserved role in regulating cell growth, proliferation, survival, and metabolism via different cellular processes. The purpose of this study was to explore the inhibitory effects of CCI-779 (temsirolimus), a specific mTOR inhibitor, on mTOR signaling, and examine the mechanism of cell growth suppression by CCI-779 in Cashmere goat fetal fibroblasts (GFb cells). GFb cells were sensitive to CCI-779 and the survival rate of cells treated with >3.0?μM of CCI-779 was significantly reduced compared with the control (p<0.01). CCI-779 inhibited the phosphorylation of mTOR (at Ser2448) and S6 (at Ser240/244), and the expression of mTOR, p70S6K, and S6. Thus, CCI-779 was toxic to GFb cells, and it induced a dose-dependent decrease in cell proliferation and caused G1/S cell cycle arrest. Taken together, these data show that CCI-779 can inhibit mTOR signaling and proliferation in GFb cells in vitro. Therefore, mTOR is an important regulator for GFb cell growth and proliferation.  相似文献   

6.
Inhibitors of the kinase mammalian target of rapamycin (mTOR) have shown sporadic activity in cancer trials, leading to confusion about the appropriate clinical setting for their use. Here we show that loss of the Von Hippel-Lindau tumor suppressor gene (VHL) sensitizes kidney cancer cells to the mTOR inhibitor CCI-779 in vitro and in mouse models. Growth arrest caused by CCI-779 correlates with a block in translation of mRNA encoding hypoxia-inducible factor (HIF1A), and is rescued by expression of a VHL-resistant HIF1A cDNA lacking the 5' untranslated region. VHL-deficient tumors show increased uptake of the positron emission tomography (PET) tracer fluorodeoxyglucose (FDG) in an mTOR-dependent manner. Our findings provide preclinical rationale for prospective, biomarker-driven clinical studies of mTOR inhibitors in kidney cancer and suggest that FDG-PET scans may have use as a pharmacodynamic marker in this setting.  相似文献   

7.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

8.
Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclin-dependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI-779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.  相似文献   

9.
Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts.  相似文献   

10.
We present immunohistochemical evidence that the mTOR/p70s6k pathway is activated in pancreatic tumors and show that the mTOR inhibitor and rapamycin analog CCI-779 potently suppresses the proliferation of pancreatic cancer cells. Consistent with a recent study, CCI-779 increased c-Jun phosphorylation (Ser63) in a dose- and time-dependent manner, and induced apoptosis in p53-defective BxPC-3 cells. In contrast to the study, however, we observed that CCI-779 concomitantly increased c-Jun protein levels and that its ability to induce apoptosis might not require the activated c-Jun. Furthermore, CCI-779 neither induced c-Jun phosphorylation in other p53-defective pancreatic cancer cells (MiaPaCa-2) nor inhibited their proliferation. c-Jun, in fact, appeared to be partly responsible for the resistance of MiaPaCa-2 cells to CCI-779. Together, these results indicate a complex role for c-Jun in cellular responses to CCI-779 and provide an important basis for investigating CCI-779 further as a potential therapeutic agent for pancreatic tumors.  相似文献   

11.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

12.
Cutaneous melanoma (CM) has become a major public health concern. Studies illustrate that minichromosome maintenance protein 7 (MCM7) participate in various diseases including skin disease. Our study aimed to study the effects of MCM7 silencing on CM cell autophagy and apoptosis by modulating the AKT threonine kinase 1 (AKT1)/mechanistic target of rapamycin kinase (mTOR) signaling pathway. Initially, microarray analysis was used to screen the CM-related gene expression data as well as differentially expressed genes. Subsequently, MCM7 expression vector and lentivirus RNA used for MCM7 silencing (LV-shRNA-MCM7) were constructed, and these vectors, dimethyl sulfoxide (DMSO) and AKT activator SC79 were then introduced into CM cell line SK-MEL-2 to validate the role of MCM7 in cell autophagy, viability, apoptosis, cell cycle, migration, and invasion. To further investigate the regulatory mechanisms of MCM7 in CM progress, the expression of MCM7, AKT1, mTOR, cyclin D1, as well as autophagy and apoptosis relative factors, such as LC3B, SOD2, DJ-1, p62, Bcl-2, Bax, and caspase-3 in melanoma cells was determined. MCM7 might mediate the AKT1/mTOR signaling pathway to influence the progress of melanoma. MCM7 silencing contributed to the increased expression of Bax, capase-3, and autophagy-related genes (LC3B, SOD2, and DJ-1), but decreased the expression of Bcl-2, which suggested that MCM7 silencing promoted autophagy and cell apoptosis. At the same time, MCM7 silencing also attenuated cell viability, invasion, and migration, and reduced the cyclin D1 expression and protein levels of p-AKT1 and p-mTOR. Taken together, MCM7 silencing inhibited CM via inactivation of the AKT1/mTOR signaling pathway.  相似文献   

13.
In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r2 = 0.98) between the expression of Na+/K+-ATPase α3 subunit and anti-proliferative activity suggested the critical role of the α3 subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.  相似文献   

14.
The Murine Double Minute 2 (MDM2) protein is a key regulator of cell proliferation and apoptosis that acts primarily by inhibiting the p53 tumor suppressor. Similarly, the PI3-Kinase (PI3K)/AKT pathway is critical for growth factor-mediated cell survival. Additionally, it has been reported that AKT can directly phosphorylate and activate MDM2. In this study, we show that IGF-1 up-regulates MDM2 protein levels in a PI3K/AKT-dependent manner. Inhibition of mTOR by rapamycin or expression of a dominant negative eukaryotic initiation factor 4E binding protein 1 (4EBP1) mutant protein, as well as ablation of eukaryotic initiation factor 4E (eIF4E), efficiently abolishes IGF-1-mediated up-regulation of MDM2. In addition, we show that rapamycin effectively inhibits MDM2 expression and sensitizes cancer cells to chemotherapy. Taken together, this study reveals a novel mechanism by which IGF-1 activates MDM2 via the mTOR pathway, and that pharmacologic inhibition of mTOR combined with chemotherapy may be more effective in treatment of a subset of cancers harboring increased MDM2 activation.  相似文献   

15.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

16.
17.
We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited TOR and prevented the expression of some senescent markers, despite high levels of p21 and cell cycle arrest. In the presence of serum, p21-arrested cells irreversibly lost proliferative potential. In contrast, when cells were arrested by p21 in the absence of serum, they retained the capacity to resume proliferation upon termination of p21 induction. In normal human cells such as WI38 fibroblasts and retinal pigment epithelial (RPE) cells, serum starvation caused quiescence, which was associated with low levels of cyclin D1, inactive TOR and slim-cell morphology. In contrast, cellular senescence with high levels of TOR activity was induced by doxorubicin (DOX), a DNA damaging agent, in the presence of serum. Inhibition of TOR partially prevented senescent phenotype caused by DOX. Thus growth stimulation coupled with cell cycle arrest leads to senescence, whereas quiescence (a condition with inactive TOR) prevents senescence.  相似文献   

18.
19.
TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to reduce activity. A T1972A mutation that blocked phosphorylation increased Tor1 activity and stress resistance. Nitrogen starvation of fission yeast inhibited TOR signaling to arrest cell cycle progression in G1 phase and promoted sexual differentiation. Starvation and a Gad8/T1972-dependent decrease in Tor1 (TORC2) activity was essential for efficient cell cycle arrest and differentiation. Experiments in human cell lines recapitulated these yeast observations, as mTOR was phosphorylated on T2173 in an AKT-dependent manner. In addition, a T2173A mutation increased mTOR activity. Thus, TOR kinase activity can be reduced through AGC kinase–controlled phosphorylation to generate physiologically significant changes in TOR signaling.  相似文献   

20.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号