首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The parietal cortical slices obtained from 8 week-old (young) and 78 week-old (middle-aged) male Wistar rats were incubated withd-[U-14C]glucose in oxygensaturated Gey's balanced salt solution. Subsequently, the radioactivities of liberated CO2 and glucose-derived amino acids (alanine, aspartate, GABA, glutamate and glutamine) obtained from the slices were measured. In the middle-aged rats as compared to the young rats, the amount of radioactivity of CO2 (P<0.01) and glutamate (P<0.05) showed a significant raduction with glutamine unchanged, while that of alanine (P<0.01), aspartate (P<0.05) and GABA (P<0.05) increased significantly. The results indicate that with advancing age the overall glucose oxidation in the cerebral cortex declines but the metabolic pathway to form amino acids is not uniformly suppressed. Therefore, the above characteristic glucose metabolism could be related to the development of heterogeneous enzyme activities associated with aging in the brain.  相似文献   

2.
The accumulation of labelled d -aspartate into crude synaptosomal fraction (P2) prepared from the rat cerebral cortex proceeded by a ‘high affinity’ system (Km= 15.1 μm The maximal velocity of d -aspartate uptake was higher than that of the ‘high affinity’ component of l -aspartate uptake and almost equal to that of l -glutamate under the same incubation conditions. Negligible metabolism of labelled d -aspartate was observed in the P2 fraction. These findings are in accord with those which have been reported for rat cerebral cortical slices. The following observations were made on d -aspartate uptake into rat cerebral P2 fraction. (1) The requirement of sodium is almost absolute and obligatory. (2) The affinity of the carrier for the substrate is increased by increasing sodium concentration in the medium, but the maximal velocity is not altered. (3) It is suggested that sodium ion is co-transported mole for mole with the substrate molecule. (4) Omission of potassium from the medium inhibits the uptake competitively. (5) Ouabain is a competitive inhibitor on the uptake. (6) Whereas thallium, rubidium and ammonium are efficient substitutes for potassium in exhibiting Na–K ATPase activity of the P2 fraction, the uptake is activated only by rubidium in the absence of potassium. These observations were in common with the uptake of l -aspartate as well as of l - and d -glutamate, but not with GABA uptake. The requirement of sodium for the uptake of d -glutamate was indicated to be higher than that in the uptake of the other amino acids. Mutual inhibitions of the uptake among l - and d -isomers of glutamate and aspartate suggested that a common carrier is involved in the transport. Mechanisms of the transport of these amino acids in the crude synaptosomal fraction were discussed.  相似文献   

3.
In order to investigate the dynamics of glutamate as a neurotransmitter and to avoid a complication by its metabolism, we studied the uptake and release of labeled non-metabolizabled-isomers of aspartate and glutamate in cerebral cortical slices and synaptosome preparation from guinea-pigs. The rate of uptake ofd-aspartate and glutamate was mutually inhibited in a non-competitive fashion, indicating that their uptake mechanisms are not exactly the same. By ouabain (0.05 mM), the uptake ofd-aspartate and glutamate into synaptosome preparation was less inhibited than that into cerebral slices. In synaptosome preparation most of the preloadedd-aspartate and glutamate was released by high-potassium (50 mM) stimulation, whereas in cerebral slices only a slight release was observed. However, when the slices were superfused with a medium free of sodium ions, which are absolutely necessary for the uptake, after preloaded with the labeled amino acids in the standard medium, a distinct release of radioactivity was induced by high-potassium stimulation. This potassium-induced release corresponded to only about 20% of the radioactivity accumulated in the slices. The accumulation ofd-aspartate and glutamate into cerebral slices was much larger on the basis of their protein content than that into synaptosome preparation, when a high concentration (1 mM) of the amino acids was added to the medium. These observations suggest that the uptake system ofd-aspartate and glutamate in cerebral slices is quite different from that in synaptosome preparation, and that the accumulation into cerebral slices is mainly localized in glial cells. In vivo the glial cell uptake is probably more important in removing the released neurotransmitter glutamate.Dedicated to Professor Yasuzo Tsukada.  相似文献   

4.
The role of excitotoxicity in the cerebral damage of glutaryl-CoA dehydrogenase deficiency (GDD) is under intense debate. We therefore investigated the in vitro effect of glutaric (GA) and 3-hydroxyglutaric (3-OHGA) acids, which accumulate in GDD, on [(3)H]glutamate uptake by slices and synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Glutamate uptake was significantly decreased by high concentrations of GA in cortical slices of 7-day-old rats, but not in cerebral cortex from 15- and 30-day-old rats and in striatum from all studied ages. Furthermore, this effect was not due to cellular death and was prevented by N-acetylcysteine preadministration, suggesting the involvement of oxidative damage. In contrast, glutamate uptake by brain slices was not affected by 3-OHGA exposure. Immunoblot analysis revealed that GLAST transporters were more abundant in the cerebral cortex compared to the striatum of 7-day-old rats. Moreover, the simultaneous addition of GA and dihydrokainate (DHK), a specific inhibitor of GLT1, resulted in a significantly higher inhibition of [(3)H]glutamate uptake by cortical slices of 7-day-old rats than that induced by the sole presence of DHK. We also observed that both GA and 3-OHGA exposure did not alter the incorporation of glutamate into synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Finally, GA in vivo administration did not alter glutamate uptake into cortical slices from 7-day-old rats. Our findings may explain at least in part why cortical neurons are more vulnerable to damage at birth as evidenced by the frontotemporal cortical atrophy observed in newborns affected by GDD.  相似文献   

5.
—The kinetics of the uptake of various compounds into the crude mitochondrial fraction (P2-fraction) of the pigeon optic tectum were studied. Aspartate, GABA, glutamate, glycine, proline and choline were taken up by high and low affinity systems. Only low affinity uptake was found for leucine and dopamine. The uptake for taurine was not saturable. The uptakes for all of the above compounds were temperature and sodium dependent. The high affinity system was more effected by sodium withdrawal than the low affinity system. Continuous sucrose gradients from 0.4 to 1.5 m were run with incubated P2 fractions. Particle-bound radioactivity sedimented in a density range of 1.0 to 1.2 m -sucrose. Additional experiments with glutamate showed that its uptake is competitively inhibited by aspartate. The addition of a 1000-fold excess of glutamate to a P2 fraction incubated at a concentration of 10–6m -glutamate led to a massive decrease of particle-bound radioactivity, suggesting a coupled action of uptake and efflux.  相似文献   

6.
The uptake of glucose by cerebral cortical slices of rats was found to be enhanced by insulin by Rafaelsen (1961) and Genes and Charnaya (1966). This was confirmed by Prasannan and Subrah-manyam (1965) and more recently by Nelson , Schultz , Pasoneau and Wry (1968). Eisenberg and Seltzer (1962) and Gotistein , Held , Sebenng and Walpurger (1965) obtained evidence for a direct effect of insulin on the entry of glucose into brain and on its metabolism in this tissue. A marked resynthesis of glycogen was demonstrated with glucose as substrate by Lebaron (1955) and Mcilwain and Tresize (1956) in cerebral cortical slices of the guinea pig. Prasannan and Subrahmanyam (1965) obtained evidence for a similar resynthesis of glycogen in cerebral cortical slices of the rat. Addition of 0.2 unit of insulin per 3.5 ml of incubating medium gave rise to an increase of 60 per cent in the resynthesis of glycogen in these slices. The incorporation of 14C from labelled glucose into glycogen and CO2 by cerebral cortical slices of normal and alloxan diabetic rats and the stimulation of the incorporation into glycogen by insulin in vitro was reported by Visweswaran , Prasannan and Subrahmanyam (1969). An insulin-like action of growth hormone on the carbohydrate metabolism was reported by Ketterer , Randle and Young (1967) and Manchester and Young (1961). It was believed to be due to the formation of a polypeptide breakdown product of growth hormone which has biological insulin-like properties. Park , Brown , Cornbluth , Daughaday and Krahl . (1952) reported an increased uptake of glucose by isolated rat diaphragm due to the action of growth hormone which is similar to that of insulin. Hence, it was considered appropriate to study the incorporation of 14C from labelled glucose into glycogen and CO2 by cerebral slices of growth hormone treated rats and the effect of growth hormone treatment on the activities of the enzymes concerned with glycogenesis in rat cerebral cortex.  相似文献   

7.
—The role of ACh-stimulated 32Pi incorporation into the phospholipids of rat cerebral cortex slices and isolated nerve endings (synaptosomes) has been studied. ACh stimulation is not connected with any carrier-mediated uptake of ACh. Such uptake may occur in slices in the presence of the anticholinesterase Sarin but barely in the presence of eserine. Regardless of the nature of the anticholinesterase used, rat cerebral cortex synaptosomes that respire and show high and low affinity choline uptake do not accumulate ACh against a concentration gradient. At exogenous ACh concentrations of 10–5m and above, some ACh enters the synaptosomes by diffusion and significantly stimulates 32Pi incorporation into phosphatidic acid. It is discussed whether, in isolated nerve endings, an increase in cytoplasmic ACh concentration due to diffusion may induce vesicle turnover to keep a balance between ‘free’ and bound ACh or if a presynaptic ACh receptor is responsible for the observed changes in phosphatidic acid. The distribution of accumulated radioactivity derived from exogenous choline and ACh respectively between ACh, choline, phosphorylcholine and betaine has been studied in slices and isolated nerve endings.  相似文献   

8.
In the current study we investigated the effect of the branched-chain alpha-keto acids (BCKA) co-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV), and alpha-ketoisovaleric (KIV) acids, which accumulate in maple syrup urine disease (MSUD), on the in vitro uptake of [3H]glutamate by cerebral cortical slices from rats aged 9, 21, and 60 days of life. We initially observed that glutamate uptake into cerebral cortex of 9- and 21-day-old rats was significantly higher, as compared to that of 60-day-old rats. Furthermore, KIC inhibited this uptake by tissue slices at all ages studied, whereas KMV and KIV produced the same effect only in cortical slices of 21- and 60-day-old rats. Kinetic assays showed that KIC significantly inhibited glutamate uptake in the presence of high glutamate concentrations (50 microM and greater). We also verified that the reduction of glutamate uptake was not due to cellular death, as evidenced by tetrazolium salt and lactate dehydrogenase viability tests of cortical slices in the presence of the BCKA. It is therefore presumed that the reduced glutamate uptake caused by the BCKA accumulating in MSUD may lead to higher extracellular glutamate levels and potentially to excitotoxicity, which may contribute to the neurological dysfunction of the affected individuals.  相似文献   

9.
Abstract– (1) The uptake and release of glutamic acid by guinea-pig cerebral cortex slices and rat synaptosomal fractions were studied, comparing the naturally occurring l - and non-natural d -isomers. Negligible metabolism of d -glutamic acid was observed in the slices. (2) Whereas in the cerebral slices the accumulation of glutamic acid was almost the same for the two isomers, d -glutamic acid was accumulated into the synaptosomal fraction at a markedly lower rate than was the L-isomer. (3) The uptake systems for d -isomer into the slices and synaptosomal fraction were found to be of single component, in contrast with the two component systems, high and low affinity components, for the uptake of l -glutamic acid. The apparent Km values for the uptake of d -glutamic acid into the slices and synaptosomal fraction were comparable with those reported for the low affinity components for l -isomer. The uptake systems for d -glutamic acid were dependent on the presence of Na+ ions in the medium, like those for l -glutamic acid and GABA. (4) The evoked release of radioactive preloaded d -glutamic acid was observed both from the slices and synaptosomal fraction following stimulation by high K+ ions in the medium. From these observations, it is evident that the evoked release of an amino acid by depolarization in vitro is not necessarily accompanied by a high affinity uptake process. (5) The uptake of l -glutamic acid, expecially into the synaptosomal fraction, was highly resistant to ouabain. On the other hand, the uptake rate of d -glutamic acid and GABA into the synaptosomal fraction was inhibited by varying concentrations of ouabain in accordance with the inhibition for brain Na-K ATPase. (6) The uptake of l -glutamic acid into subfractions of the P2 fraction was studied in relation to the distribution of the ‘synaptosomal marker enzymes’. An attempt to correlate the activities of enzymes of glutamic acid metabolism with the uptake of l -glutamic acid into the synaptosomal fraction from various parts of brain was unsuccessful. The high affinity uptake of l -glutamic acid was found to be very active in the synaptosomal fraction from any part of brain examined.  相似文献   

10.
P2 fractions from brains of genetically seizure-susceptible (SS) rats as compared to seizure-resistant (SR) rats show decreased high affinity uptake of taurine. Uptakes of GABA and glutamate into P2 fractions did not differ between the substrains. In neonatal SS rats that had never had a seizure, the uptake of taurine is decreased both into the whole brain in vivo and into P2 fraction in vitro, as compared to age-matched SR rats. This indicates that decreased uptake is not a consequence of seizure activity per se. In non-seizure susceptible progeny of SS rats, the uptake of taurine into P2 fraction did not differ significantly from that of SR rats. In kidney cortex slices from SS rats, taurine uptake is slightly greater than in slices from SR rats. We propose that the decreased taurine transport in the P2 fraction of the brains of SS rats may reflect a defect in transport in vivo that contributes to seizure-susceptibility.  相似文献   

11.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

12.
The effects of a subacute intoxication with diisopropyl fluorophosphate (DPF) on total muscarinic acetylcholine receptor sites (mAChRs) and M-1 AChRs were evaluated in the cerebral cortex of young (2–4 months) and aged (22–24 months) Fischer 344 rats. Since M-1 AChRs are coupled to the metabolism of phosphoinositides, carbachol-induced accumulation of inositol phosphates (IP) and its inhibition by glutamate and NMDA was also measured in the cortical slices. DFP treatment caused about 75% inhibition of cholinesterase and 35% down-regulation of mAChRs (measured as [3H]quinuclidinyl benzylate binding) in both young and aged rats. The down-regulation of M-1-ACHRs (measured as [3H]pirenzepine binding) was more pronounced in aged (30%) than in young (17%) DFP-treated rats. There was a significant increase in carbachol-induced IP accumulation in aged, with respect to young, untreated rats. DFP treatment caused a considerable decrease in such IP accumulation in aged but not in young rats. Glutamate and NMDA antagonized carbachol-induced IP accumulation in untreated young and aged rats (and the effects of NMDA were reversed by carboxy-piperazinyl-propyl phosphonic acid). In DFP-treated rats such antagonism was somewhat less pronounced. The data appear of interest in relation to the use of anticholinesterase compounds in the therapy of senile dementia of Alzheimer's type. They suggest that beside their primary action (increasing brain ACh levels) such compounds also act on post-receptor mechanisms and on the interactions between cholinergic and glutamatergic neurotransmitter systems.  相似文献   

13.
l-Glutamate has an excitatory and cytotoxic effect on the central nervous system. It was shown previously that norepinephrine and dopamine uptake and release were affected by in vivo administration of glutamate to adult rats. The kinetic parameters, Km and Vmax of [14C]DA uptake and release were measured on synaptosomal and slices from caudate nucleus under in vitro conditions at different glutamate concentrations. Results showed an important increase in [14C]DA uptake on synaptosomal (> 100%) and slices by lower glutamate concentrations, the affinity for transport system was increased (100%) and its release of high potassium evoked was also increased at 0.5 μM of glutamate. The results suggest the possibility that glutamate may modify DA uptake and release interacting with the DA transporter complex at the synaptic level.  相似文献   

14.

Aging, as the major risk factor of Alzheimer’s disease (AD), may increase susceptibility to neurodegenerative diseases through many gradual molecular and biochemical changes. Extracellular glutamate homeostasis and extrasynaptic glutamate N-methyl-D-aspartate receptors (NMDAR) are among early synaptic targets of oligomeric amyloid β (Aβo), one of the AD related synaptotoxic protein species. In this study, we asked for the effects of Aβo on long-term depression (LTD), a form of synaptic plasticity dependent on extrasynaptic NMDAR activation, and on a tonic current (TC) resulting from the activation of extrasynaptic NMDAR by ambient glutamate in hippocampal slices from young (3–6-month-old) and aged (24–28-month-old) Sprague–Dawley rats. Aβo significantly enhanced the magnitude of LTD and the amplitude of TC in aged slices compared to young ones. TBOA, a glutamate transporter inhibitor, also significantly increased LTD magnitude and TC amplitude in slices from aged rats, suggesting either an age-related weakness of the glutamate clearance system and/or a facilitated extrasynaptic NMDAR activation. From our present data, we hypothesize that senescence-related impairment of the extrasynaptic environment may be a vector of vulnerability of the aged hippocampus to neurodegenerative promotors such as Aβo.

  相似文献   

15.
Abstract— Ethanol administered in vivo or in vitro during incubation of brain slices was studied with respect to its effect on brain protein synthesis. In the in vivo series the rats were given a single intraperitoneal injection of ethanol 3 h before death. Slices of cerebral cortex and liver were incubated in isotonic saline media containing [3H]leucine. Amounts of free and protein-bound radioactivity were determined. Subcellular fractions and fractions enriched in neuronal perikarya and in glial cells were prepared from cortical slices subsequent to incubation, and the specific radioactivity determined for each cell type. The incorporation of [3H]leucine into brain proteins was inhibited while incorporation into liver proteins was stimulated in ethanol-treated rats. The levels of TCA-soluble radio-activity, however, did not differ between the ethanol group and the controls. In the fractionated material from cerebral cortex, the specific radioactivity in the neuronal fraction was unaffected by ethanol, while the radioactivity in the glial fraction was significantly depressed. In vitro administration of ethanol induced a non-linear response in both brain and liver, with depression of leucine incorporation into proteins of cerebral cortex at all concentrations used. When brain slices were exposed to ethanol in vitro, in concentrations corresponding to the in vivo experiments, a similar reduction of the leucine incorporation into the glial fraction was obtained. Incorporation of leucine into subcellular fractions from whole brain cortex was also investigated. The specific sensitivity of the glial fraction to ethanol is discussed in relation to the involvement of the different cell types with transport processes in the brain.  相似文献   

16.
Isolated renal cortical tubule fragments from rats ranging in age from less than 48 h to 15 weeks were used to examine the pattern of cystine uptake with development. Immature tubules took up cystine with a faster initial rate than mature tubules and did not reach a steady state by 60 min. By eight weeks of age, the timed uptake of cystine began to approach a steady state and between 8 and 11 weeks the uptake pattern achieved its adult form of reaching a steady state by 30 min of incubation. Analysis of the intracellular metabolism of the cystine taken up by the newborn tubules revealed that the majority had been reduced to cysteine with the formation of small amounts of reduced glutathione. Cystine entered the renal cortical tubule cell from the newborn via two saturable transport systems similar to the mature animal. The kinetic parameters of initial uptake of these two transport systems were similar in the mature and newborn animal except for a higher maximum transport velocity for the low Km, low capacity system in the newborn. Lysine inhibited cystine uptake by newborn tubules and this inhibition appeared to occur on the low Km, low capacity transport system similar to the adult. Cystine uptake was sodium dependent with an apparent affinity for sodium of 36 mequiv./l. From this data, the physiologic cystinuria of the immature animal does not appear to be referrable to a lower rate of influx as previously observed with the cortical slice. Other mechanisms should be sought to explain this phenomenon of immaturity.  相似文献   

17.
Kinetics for uptake and release of glutamate were measured in normal, i.e., nontransformed, astrocytes in cultures obtained from the dissociated, cortexenriched superficial parts of the brain hemispheres of newborn DBA mice. The uptake kinetics indicated a minor, unsaturable component together with an intense uptake following Michaelis-Menten kinetics. TheK m (50 M) was reasonably comparable to the corresponding values in brain slices and in other glial preparations. TheV max (58.8 nmol min–1 mg–1 protein) was, however, much higher than that observed in glial cell lines or peripheral satellite cells, and also considerably higher than that generally reported for brain slices. The release of glutamate was much smaller than the uptake, and only little affected by an increase of the external glutamate concentration, suggesting a net accumulation of glutamate rather than a homoexchange. Such an intense accumulation of glutamate into normal astrocytes may play a major role in brain metabolism and may help keep the extracellular glutamate cohcentration below excitatory levels.  相似文献   

18.
Abstract—
  • 1 Upon incubation, slices of brain tissue took up fluid; the degree of swelling increased with increasing age. No sweiling occurred in slices from foetal brain. Since this swelling was associated with increases in the inulin space, the percentage of inulin space in slices at the end of incubation increased during brain development.
  • 2 Most of the capacity for ion transport seemed to be absent from foetal brain. In vivo and in slices, Na+ was very high and K+ was very low in comparison to levels at other ages. There was a rapid change around birth, but no significant change at later ages. Upon incubation, Na+ levels increased in other slices, but not in slices of foetal brain.
  • 3 Upon incubation of the slices, ATP levels were restored to levels close to those in the living brain; there were no significant alterations in available energy during development to explain changes in amino acid transport.
  • 4 The composition of the free pool of cerebral amino acids in vivo changed with development, with some compounds (glutamic acid and related compounds) increasing, others (mostly‘essential’amino acids) decreasing, with age. These changes were not linear with time, and the level of a compound might exhibit several peaks during development.
  • 5 The uptake (influx) of taurine, glutamate and glycine into brain slices increased rapidly during the foetal and early neonatal periods, reached a maximum between 2 and 3 weeks of postnatal age and then declined to adult levels. The levels of steady-state uptake with glycine also exhibited a maximal peak at 2-3 weeks of postnatal age. Steady-state uptake of taurine and glutamate reached adult levels by about 3 weeks of age.
  • 6 The pattern of inhibition of amino acid transport by two specific amino acid analogues changed during development for some amino acids (GABA, glycine and glutamate), indicating an alteration in substrate specificity.
  • 7 The results demonstrate complex changes in cerebral amino acid transport during development, with several maxima or minima and with changes in specificity for at least some compounds.
  相似文献   

19.
—The effect of retinal ablation on the high and low affinity uptake of choline, GABA, glutamate, glycine and proline into the crude mitochondrial fraction of the pigeon optic tectum was studied. After 4–8 weeks of degeneration the uptake for glutamate, and to a lesser degree the uptake for GABA, at both the high and the low affinity substrate concentration, decreased. In contrast, the uptake of glycine increased. Kinetic analysis showed that the reduced uptake of glutamate was due to a decrease in the Vmax. By intraocular injection of [3H]proline the retinal endings in the optic tectum were labelled with the fast axoplasmic transport fraction. Optic terminals labelled in this way have the same sedimentation characteristics in continous sucrose gradients as the particles accumulating giutamate in the uptake assay.  相似文献   

20.
The action of gamma-hydroxybutyric acid on cerebral glucose metabolism   总被引:1,自引:0,他引:1  
Abstract— Experiments have been performed to study the effect of gamma-hydroxybutyric acid (GHB) on glucose metabolism in vivo and in vitro.
  • 1 Administration of GHB (500 mg/kg) is followed by sleep in rats and mice.
  • 2 GHB is shown to increase the 1-14C/6-14C ratio in expired CO2 in mice in vivo by 300 per cent.
  • 3 The same effect is obtained with slices of cerebral cortical grey matter from GHB-treated rats, where the 1-14C/6-14C ratio is increased from 1.72 to 3.63, but not with homogenates of cerebral cortex, nor with slices of kidney or diaphragm.
  • 4 GHB (500 mg/kg, intrapentoneally) specifically increases the activity of glucosed-6-phosphate dehydrogenase in vivo in rat and mouse whole brain by 27 per cent. The time course of this effect correlates with the sleeping time in both species.
  • 5 The activity of glucose-6-phosphate dehydrogenase is not altered in vitro by high concentrations of GHB.
  • 6 GHB stimulates O2 uptake by slices of cerebral cortical grey matter by 24 per cent, but it is not itself able to support respiration by the tissue.
  • 7 It is proposed that GHB specifically increases the activity of the pentose phosphate pathway in brain, and that this effect is mediated by an increase in glucose-6-phosphate dehydrogenase activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号