首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the triple‐helical peptide (Pro‐Hyp‐Gly)3‐Pro‐Arg‐Gly‐(Pro‐Hyp‐Gly)4 (POG3‐PRG‐POG4) was determined at 1.45 Å resolution. POG3‐PRG‐POG4 was designed to permit investigation of the side‐chain conformation of the Arg residues in a triple‐helical structure. Because of the alternative structure of one of three Arg residues, four side‐chain conformations were observed in an asymmetric unit. Among them, three adopt a ttg?t conformation and the other adopts a tg?g?t conformation. A statistical analysis of 80 Arg residues in various triple‐helical peptides showed that, unlike those in globular proteins, they preferentially adopt a tt conformation for χ1 and χ2, as observed in POG3‐PRG‐POG4. This conformation permits van der Waals contacts between the side‐chain atoms of Arg and the main‐chain atoms of the adjacent strand in the same molecule. Unlike many other host–guest peptides, in which there is a significant difference between the helical twists in the guest and the host peptides, POG3‐PRG‐POG4 shows a marked difference between the helical twists in the N‐terminal peptide and those in the C‐terminal peptide, separated near the Arg residue. This suggested that the unique side‐chain conformation of the Arg residue affects not only the conformation of the guest peptide, but also the conformation of the peptide away from the Arg residue. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1000–1009, 2014.  相似文献   

2.
For the rational design of a stable collagen triple helix according to the conventional rule that the pyrrolidine puckerings of Pro, 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) should be down at the X-position and up at the Y-position in the X-Y-Gly repeated sequence for enhancing the triple helix propensities of collagen model peptides, a series of peptides were prepared in which X- and Y-positions were altogether occupied by Hyp(R), Hyp(S), fPro(R) or fPro(S). Contrary to our presumption that inducing the X-Y residues to adopt a down-up conformation would result in an increase in the thermal stability of peptides, the triple helices of (Hyp(S)-Hyp(R)-Gly)(10) and (fPro(S)-fPro(R)-Gly)(10) were less stable than those of (Pro-Hyp(R)-Gly)(10) and (Pro-fPro(R)-Gly)(10), respectively. As reported by B?chinger's and Zagari's groups, (Hyp(R)-Hyp(R)-Gly)(10) which could have an up-up conformation unfavorable for the triple helix, formed a triple helix that has a high thermal stability close to that of (Pro-Hyp(R)-Gly)(10). These results clearly show that the empirical rule based on the conformational preference of pyrrolidine ring at each of X and Y residues should not be regarded as still valid, at least for predicting the stability of collagen models in which both X and Y residues have electronegative groups at the 4-position.  相似文献   

3.
The triple helix is a specialized protein motif, found in all collagens as well as in noncollagenous proteins involved in host defense. Peptides will adopt a triple-helical conformation if the sequence contains its characteristic features of Gly as every third residue and a high content of Pro and Hyp residues. Such model peptides have proved amenable to structural studies by x-ray crystallography and NMR spectroscopy, suitable for thermodynamic and kinetic analysis, and a valuable tool in characterizing the binding activities of the collagen triple helix. A systematic approach to understanding the amino acid sequence dependence of the collagen triple helix has been initiated, based on a set of host-guest peptides of the form, (Gly-Pro-Hyp)(3)-Gly-X-Y-(Gly-Pro-Hyp)(4). Comparison of their thermal stabilities has led to a propensity scale for the X and Y positions, and the additivity of contributions of individual residues is now under investigation. The local and global stability of the collagen triple helix is normally modulated by the residues in the X and Y positions, with every third position occupied by Gly in fibril-forming collagens. However, in collagen diseases, such as osteogenesis imperfecta, a single Gly may be substituted by another residue. Host-guest studies where the Gly is replaced by various amino acids suggest that the identity of the residue in the Gly position affects the degree of destabilization and the clinical severity of the disease.  相似文献   

4.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puckering and conformation in triple helix formation; however, the details of how they affect triple helix stability are unknown. Underscoring this, we recently demonstrated that the polypeptide Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forms a triple helix that is more stable than Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). Here we report crystal the structure of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide at 1.55 A resolution. The puckering of the Yaa position 4(R)Hyp in this structure is up (Cgamma exo), as has been found in other collagen peptide structures. Notably, however, the 4(R)Hyp in the Xaa position also takes the up pucker, which is distinct from all other collagen structures. Regardless of the notable difference in the Xaa proline puckering, our structure still adopts a 7/2 superhelical symmetry similar to that observed in other collagen structures. Thus, the basis for the observed differences in the thermodynamic data of the triple helix<--> coil transition between our peptide and other triple helical peptides likely results from contributions from the unfolded state. Indeed, the unfolded state of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide seems to be stabilized by a preformed polyproline II helix in each strand, which could be explained by the presence of a unique repeating intra-strand water-mediated bridge observed in the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH structure, as well as a higher amount of trans peptide bonds.  相似文献   

5.
Xu Y  Hyde T  Wang X  Bhate M  Brodsky B  Baum J 《Biochemistry》2003,42(29):8696-8703
Protein folding is determined by molecular features in the unfolded state, as well as the native folded structure. In the unfolded state, imino acids both restrict conformational space and present cis-trans isomerization barriers to folding. Because of its high proline and hydroxyproline content, the collagen triple-helix offers an opportunity to characterize the impact of imino acids on the unfolded state and folding kinetics. Here, NMR and CD spectroscopy are used to characterize the role of imino acids in a triple-helical peptide, T1-892, which contains an 18-residue sequence from type I collagen and a C-terminal (Gly-Pro-Hyp)(4) domain. The replacement of Pro or Hyp by an Ala in the (Gly-Pro-Hyp)(4) region significantly decreases the folding rate at low but not high concentrations, consistent with less efficient nucleation. To understand the molecular basis of the decreased folding rate, changes in the unfolded as well as the folded states of the peptides were characterized. While the trimer states of the peptides are all similar, NMR dynamics studies show monomers with all trans (Gly-Pro-Hyp)(4) are less flexible than monomers containing Pro --> Ala or Hyp --> Ala substitutions. Nucleation requires all trans bonds in the (Gly-Pro-Hyp)(4) domain and the constrained monomer state of the all trans nucleation domain in T1-892 increases its competency to initiate triple-helix formation and illustrates the impact of the unfolded state on folding kinetics.  相似文献   

6.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

7.
Stabilization of collagen fibrils by hydroxyproline   总被引:1,自引:0,他引:1  
G Némethy  H A Scheraga 《Biochemistry》1986,25(11):3184-3188
The substitution of hydroxyproline for proline in position Y of the repeating Gly-X-Y tripeptide sequence of collagen-like poly(tripeptide)s (i.e., in the position in which Hyp occurs naturally) is predicted to enhance the stability of aggregates of triple helices, while the substitution of Hyp in position X (where no Hyp occurs naturally) is predicted to decrease the stability of aggregates. Earlier conformational energy computations have indicated that two triple helices composed of poly(Gly-Pro-Pro) polypeptide chains pack preferentially with a nearly parallel orientation of the helix axes [Nemethy, G., & Scheraga, H.A. (1984) Biopolymers 23, 2781-2799]. Conformational energy computations reported here indicate that the same packing arrangement is preferred for the packing of two poly(Gly-Pro-Hyp) triple helices. The OH groups of the Hyp residues can be accommodated in the space between the two packed triple helices without any steric hindrance. They actually contribute about 1.9 kcal/mol per Gly-Pro-Hyp tripeptide to the packing energy, as a result of the formation of weak hydrogen bonds and other favorable noncovalent interatomic interactions. On the other hand, the substitution of Hyp in position X weakens the packing by about 1.7 kcal/mol per Gly-Hyp-Pro tripeptide. Numerous published experimental studies have established that Hyp in position Y stabilizes an isolated triple helix relative to dissociated random coils, while Hyp in position X has the opposite effect. We propose that Hyp in position Y also enhances the stability of the assembly of collagen into microfibrils while, in position X, it decreases this stability.  相似文献   

8.
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.  相似文献   

9.
Conformational analysis of polypeptides (Gly-Pro-Ser)n and (Gly-Val-Hyp)n was carried out for collagen-like triple helical complexes (coiled coils with screw symmetry). The lowest energy structure of the first polymer (helical parameters t 52,8, h 0,282 nm) is very close to that of (Gly-Pro-Hyp)n. The hydroxyl group of a serine residue does not form any intramolecular hydrogen bonds in this structure. (Gly-Val-Hyp)n triple complex is shown to unwind to t 7,7, h 0,297 nm as a result of optimization procedure. These findings confirm the assumption, made earlier on the basis of conformational analysis of (Gly-Pro-Hyp)n, (Gly-Pro-Ala)n, (Gly-Ala-Hyp)n, (Gly-Ala-Ala)n, that the collagen triple helix contains stable wound triplets with proline in the second position, while the absence of imino acid in the 2nd position facilitates the unwinding of the triple helix. Thus, a collagen helix appears to have different parameters for the sites differing in the amino acid sequence. The values measured in the X-ray experiments (h 0,29 nm, t' 36) should be considered as a result of averaging. The model allows to reconcile the X-ray data for collagen and crystalline (Gly-Pro-Pro)10 oligomer.  相似文献   

10.
Degradation of type I collagen by collagenases is an important part of extracellular remodeling. To understand the role of the hinge region of fibroblast collagenase in its collagenolytic activity, we individually substituted the 10 conserved amino acid residues at positions 264, 266, 268, 296, 272, 277, 284, 289, 307, and 313 in this region of the enzyme by their corresponding residues in MMP-3, a noncollagenolytic matrix metalloproteinase. The general proteolytic and triple helicase activities of all of the enzymes were determined, and their abilities to bind to type I collagen were assessed. Among the mutants, only G272D mutant enzyme exhibited a significant change in type I collagenolysis. The alteration of the Gly(272) to Asp reduced the collagenolytic activity of the enzyme to 13% without affecting its general proteolytic activity, substrate specificity, or the collagen binding ability. The catalytic efficiency of the G272D mutant for the triple helical peptide substrate [C(6)-(GP- Hyp)(4)GPL(Mca)GPQGLRGQL(DPN)GVR(GP-HYP)(4)-NH(2)](3) and the peptide substrate Mca-PLGL(Dpa)AR-NH(2) and its dissociation constant for the triple helical collagen were similar to that of the wild type enzyme, indicating that the presence of this residue in fibroblast collagenase is particularly important for the efficient cleavage of type I collagen. Gly(272) is evidently responsible for the hinge-bending motion that is essential for allowing the COOH-terminal domain to present the collagen to the active site.  相似文献   

11.
We have determined the 1.8 Å crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)2-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3. The central GFOGER hexapeptide is recognised specifically by the integrins α2β1, α1β1, α10β1 and α11β1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin α2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure.  相似文献   

12.
The single‐crystal structure of the collagen‐like peptide (Pro‐Pro‐Gly)4‐Hyp‐Asp‐Gly‐(Pro‐Pro‐Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.6°) suggests that this peptide adopts a 7/2 triple‐helical structure and that its conformation is very similar to that of (Gly‐Pro‐Hyp)9, which has the typical repeating sequence in collagen. High‐resolution studies on other collagen‐like peptides have shown that imino acid‐rich sequences preferentially adopt a 7/2 triple‐helical structure (θ = 51.4°), whereas imino acid‐lean sequences adopt relaxed conformations (θ < 51.4°). The guest Gly‐Hyp‐Asp sequence in the present peptide, however, has a large helical twist (θ = 61.1°), whereas that of the host Pro‐Pro‐Gly sequence is small (θ = 46.7°), indicating that the relationship between the helical conformation and the amino acid sequence of such peptides is complex. In the present structure, a strong intermolecular hydrogen bond between two Asp residues on the A and B strands might induce the large helical twist of the guest sequence; this is compensated by a reduced helical twist in the host, so that an overall 7/2‐helical symmetry is maintained. The Asp residue in the C strand might interact electrostatically with the N‐terminus of an adjacent molecule, causing axial displacement, reminiscent of the D‐staggered structure in fibrous collagens. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 436–447, 2013.  相似文献   

13.
The collagen triple helix is composed of three polypeptide strands, each with a sequence of repeating (Xaa-Yaa-Gly) triplets. In these triplets, Xaa and Yaa are often tertiary amides: L-proline (Pro) and 4(R)-hydroxy-L-proline (Hyp). To determine the contribution of tertiary amides to triple-helical stability, Pro and Hyp were replaced in synthetic collagen mimics with a non-natural acyclic tertiary amide: N-methyl-L-alanine (meAla). Replacing a Pro or Hyp residue with meAla decreases triple-helical stability. Ramachandran analysis indicates that meAla residues prefer to adopt straight phi and psi angles that are dissimilar from those of the Pro and Hyp residues in the collagen triple helix. Replacement with meAla decreases triple-helical stability more than does replacement with Ala. All of the peptide bonds in triple-helical collagen are in the trans conformation. Although an Ala residue greatly prefers the trans conformation, a meAla residue exists as a nearly equimolar mixture of trans and cis conformers. These findings indicate that the favorable contribution of Pro and Hyp to the conformational stability of collagen triple helices arises from factors other than their being tertiary amides.  相似文献   

14.
We have shown recently that glycosylation of threonine in the peptide Ac-(Gly-Pro-Thr)(10)-NH(2) with beta-d-galactose induces the formation of a collagen triple helix, whereas the nonglycosylated peptide does not. In this report, we present evidence that a collagen triple helix can also be formed in the Ac-(Gly-Pro-Thr)(10)-NH(2) peptide, if the proline (Pro) in the Xaa position is replaced with 4-trans-hydroxyproline (Hyp). Furthermore, replacement of Pro with Hyp in the sequence Ac-(Gly-Pro-Thr(beta-d-Gal))(10)-NH(2) increases the T(m) of the triple helix by 15.7 degrees C. It is generally believed that Hyp in the Xaa position destabilizes the triple helix because (Pro-Pro-Gly)(10) and (Pro-Hyp-Gly)(10) form stable triple helices but the peptide (Hyp-Pro-Gly)(10) does not. Our data suggest that the destabilizing effect of Hyp relative to Pro in the Xaa position is only true in the case of (Hyp-Pro-Gly)(10). Increasing concentrations of galactose in the solvent stabilize the triple helix of Ac-(Gly-Hyp-Thr)(10)-NH(2) but to a much lesser extent than that achieved by covalently linked galactose. The data explain some of the forces governing the stability of the annelid/vestimentiferan cuticle collagens.  相似文献   

15.
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.  相似文献   

16.
In collagen, strands of the sequence XaaYaaGly form a triple-helical structure. The Yaa residue is often (2S,4R)-4-hydroxyproline (Hyp). The inductive effect of the hydroxyl group of Hyp residues greatly increases collagen stability. Here, electron withdrawal by the hydroxyl group in Hyp and its 4S diastereomer (hyp) is increased by the addition of an acetyl group or trifluoroacetyl group. The crystalline structures of AcHyp[C(O)CH3]OMe and Achyp[C(O)CH3]OMe are similar to those of AcHypOMe and AcProOMe, respectively. The O-acylation of AcHypOMe and AchypOMe increases the 13C chemical shift of its Cgamma atom: AcHyp[C(O)CF3]OMe congruent with Achyp[C(O)CF3]OMe > AcHyp[C(O)CH3]OMe congruent with Achyp[C(O)CH3]OMe > or = AcHypOMe congruent with AchypOMe. This increased inductive effect is not apparent in the thermodynamics or kinetics of amide bond isomerization. Despite apparently unfavorable steric interactions, (ProHypGly)(10), which is O-acylated with 10 acetyl groups, forms a triple helix that has intermediate stability: (ProHypGly)(10) > {ProHyp[C(O)CH3]Gly}(10) > (ProProGly)(10). Thus, the benefit to collagen stability endowed by the hydroxyl group of Hyp residues is largely retained by an acetoxyl group.  相似文献   

17.
Xu Y  Bhate M  Brodsky B 《Biochemistry》2002,41(25):8143-8151
Peptide T1-892 is a triple-helical peptide designed to include two distinct domains: a C-terminal (Gly-Pro-Hyp)(4) sequence, together with an N-terminal 18-residue sequence from the alpha1(I) chain of type I collagen. Folding experiments of T1-892 using CD spectroscopy were carried out at varying concentrations and temperatures, and fitting of kinetic models to the data was used to obtain information about the folding mechanism and to derive rate constants. Proposed models include a heterogeneous population of monomers with respect to cis-trans isomerization and a third-order folding reaction from competent monomer to the triple helix. Fitting results support a nucleation domain composed of all or most of the (Gly-Pro-Hyp)(4) sequence, which must be in trans form before the monomer is competent to initiate triple-helix formation. The folding of competent monomer to a triple helix is best described by an all-or-none third-order reaction. The temperature dependence of the third-order rate constant indicates a negative activation energy and provides information about the thermodynamics of the trimerization step. These CD studies complement NMR studies carried out on the same peptide at high concentrations, illustrating how the rate-limiting folding step is affected by changes in concentration. This sequence preference of repeating Gly-Pro-Hyp units for the initiation of triple-helix formation in peptide T1-892 may be related to features in the triple-helix folding of collagens.  相似文献   

18.
Collagen plays a key role in the activation and adhesion of blood platelets via their cell-surface receptors. Normally, collagen-related peptides (CRPs), even one as long as a 30-mer (10 Gly-Pro-Hyp (GPO) repeats), are unable to effectively express collagen's platelet-activating behavior. We attached two short CRPs, AcHN-(Gly-Pro-Hyp)nGly-OH with n = 5 (1) and n = 10 (2), via the C-terminus to amino-functionalized latex nanoparticles to create a multimeric display of triple helical motifs. These nanomaterials were characterized by dynamic light scattering and environmental scanning electron microscopy. The nanoparticles bearing the 31-mer CRP sequence, 2, but not the 16-mer sequence, 1, effectively induced the aggregation of human platelets, with a potency level approaching that of native type I collagen. Our results highlight the importance of presenting triple helical CRP motifs of sufficient length on a suitable scaffold in order to stimulate platelets.  相似文献   

19.
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.  相似文献   

20.
Important stabilizing features for the collagen triple helix include the presence of Gly as every third residue, a high content of imino acids, and interchain hydrogen bonds. Host-guest peptides have been used previously to characterize triple-helix propensities of individual residues and Gly-X-Y triplets. Here, comparison of the thermal stabilities of host-guest peptides of the form (Gly-Pro-Hyp)3-Gly-X-Y-Gly-X'-Y'-(Gly-Pro-Hyp)3 extends the study to adjacent tripeptide sequences, to encompass the major classes of potential direct intramolecular interactions. Favorable hydrophobic interactions were observed, as well as stabilizing intrachain interactions between residues of opposite charge in the i and i + 3 positions. However, the greatest gain in triple-helix stability was achieved in the presence of Gly-Pro-Lys-Gly-Asp/Glu-Hyp sequences, leading to a T(m) value equal to that seen for a Gly-Pro-Hyp-Gly-Pro-Hyp sequence. This stabilization is seen for Lys but not for Arg and can be assigned to interchain ion pairs, as shown by molecular modeling. Computational analysis shows that Lys-Gly-Asp/Glu sequences are present at a frequency much greater than expected in collagen, suggesting this interaction is biologically important. These results add significantly to the understanding of which surface ion pairs can contribute to protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号