首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin E2 (PGE2) and 6 keto-PGF, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoadday (RIA) method. The PGE2 and 6-keto-PGF were continuousyl released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6-keto-PGF was 4.5 ± 8.4 pg/min and 254 ± 75 pg.min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) 5 ng/ml) induced an increased of PGE2 and 6-keto-PGF release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

2.
The effects of prostaglandins E2(PGE2) and I2(PGI2), arachidonic acid, and indomethacin on the vascular reactivity to norepinephrine were tested in three different isolated rat vascular beds (mesenteric artery, hind limb and splenic artery) perfused with the Krebs bicarbonate solution. In these vascular beds PGE2 (0.25 – 16 ng/ml), PGI2 (0.1 – 100 ng/ml), arachidonic acid (0.1 – 10 μg/ml) or indomethacin (5 – 25 μg/ml) in the perfusate did not change the basal pressure. In the splenic artery, both PGE2 and PGI2 attenuated the vascular response to norepinephrine in a dose-related manner. In the mesenteric vascular bed and the hind limb, however, PGE2 potentiated the vascular response to norepinephrine, while PGI2 attenuated this response. Arachidonic acid, a prostaglandin precursor, potentiated the vasoconstrictor response to norepinephrine in the mesenteric artery and the hind limb, whereas in the splenic artery, attenuation of the response to norepinephrine occurred. In these three vascular beds, indomethacin, a prostaglandin synthetase inhibitor, attenuated the vascular response to norepinephrine. In the mesenteric artery and the hind limb, PGE2 and not PGI2 reversed the effect of indomethacin, while in the splenic artery, neither PGE2 nor PGI2 reversed the inhibitory effect of indomethacin. These results suggest that, at least in the rat mesenteric artery and the hind limb where the modulating effect of arachidonic acid is similar to that of PGE2, PGE2 and not PGI2 is a primary endogenous prostaglandin in determining the vascular reactivity to norepinephrine.  相似文献   

3.
The effects of prostaglandin E2 (PGE2) and indomethacin on the vascular reactivity to norepinephrine were tested in three different isolated rat vascular beds (mesenteric artery, hind limb and splenic artery) perfused with the Krebs bicarbonate solution. In these vascular beds PGE2 (0.1–64 ng/ml) or indomethacin (0.1–96 μg/ml) in the perfusate did not change the basal pressure. In the mesenteric vascular bed and the hind limb, PGE2 dose-dependently potentiated the vascular response to norepinephrine, whereas PGE2 dose-dependently inhibited the vascular response to noreinephrine in the splenic artery. In these three vascular beds indomethacin in the perfusate dose-dependently attenuated the vascular response to norepinephrine. In the mesenteric artery and the hind limb PGE2 restored the effect of indomethacin, but in the splenic artery PGE2 did not restore the inhibitory effect of indomethacin. These results indicate that the modulating effect of exogenously administrated PGE2 on the vascular action to norepinephrine varies in different vascular beds. It is also suggested that the contribution of endogenous PGE2 synthesized in the vascular wall to the vascular reactivity to norepinephrine is, as well as the effect of exogenous PGE2, different in different vascular beds.  相似文献   

4.
The release of prostaglandin E2 (PGE2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of prostacyclin (PGI2), by the perfused mesenteric arteries of renal and spontaneously hypertensive rats (SHR) have been measured. Unstimulated mesenteric arteries from two-kidney one-clip hypertensive rats (2K-1C) released 1.6 times as much PGE2 and 2.7 times as much 6-keto-PGF1 alpha as those of control rats. The release of PGE2 by mesenteric arteries from one-kidney one-clip hypertensive rats (1K-1C) was not significantly different from that of uninephrectomized normotensive rats, but the release of 6-keto-PGF1 alpha was 3.5 times higher in the former than in the latter. Norepinephrine (NE) induced a dose-related increase in perfusion pressure, in PGE2, and 6-keto-PGF1 alpha release in all four groups. However, its effect on the release of PGE2 was more pronounced in 2K-1C than in sham-operated rats. There was no difference between 1K-1C and the uninephrectomized group. The effect of NE on the release of 6-keto-PGF1 alpha was significantly higher for both renal hypertensive groups. These results indicate that the release of PGE2 is more dependent on the loss of renal mass than on hypertension, while the reverse applies to the release of 6-keto-PGF1 alpha. Unstimulated mesenteric arteries from SHR released less PGE2 and less 6-keto-PGF1 alpha than those of Wistar-Kyoto normotensive rats (WKY), but the release was not significantly different from Wistar rats. Under NE stimulation, WKY mesenteric arteries showed almost no increase in release of PGs. Compared with those of Wistar rats, SHR mesenteric arteries showed a greater pressor response to NE, a lower PGE2 release, and the same release of 6-keto-PGF1 alpha. These findings reveal the difficulty of selecting an appropriate control group in studies involving SHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Prostaglandins released from isolated, ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogeneously supplied arachidonic acid was converted mainly to PGF which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF production with arachidonic acid as the substrate was found to be 1.90 × 10−4M, while the Ki for aspirin was found to be 2.47 × 10−4M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environmental factors on the release of prostaglandins by the lung.  相似文献   

6.
Prostaglandins released from isolated, ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogenously supplied arachidonic acid was converted mainly to PGF2 which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF2 in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF2 production with arachidonic acid as the substrate was found to be 1.90 × 10−4M, while the Ki for aspirin was found to be 2.47 × 10−4M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environmental factors on the release of prostaglandins by the lung.  相似文献   

7.
Akiyama S  Hobara N  Maruo N  Hashida S  Kitamura K  Eto T  Kawasaki H 《Peptides》2005,26(11):2222-2230
Adrenomedullin (AM) is a potent vasodilator peptide whose major source is the vascular wall. In the present study, the mechanism of release of AM was investigated in the rat mesenteric resistance artery. The isolated mesenteric vascular bed was perfused with Krebs solution at a constant flow rate (5 ml/min) and AM in the perfusate was measured by a highly sensitive enzyme immunoassay (Immunoenzymometric assay; IEMA) method. In preparations without endothelium, spontaneous release of AM was detected in the perfusate (68.7+/-5.8 fmol/ml, n=45). Periarterial nerve stimulation (PNS, 4 and 8 Hz) caused 11.4+/-3.9% (4 Hz) and 9.1+/-3.5% (8 Hz) decreases in the spontaneous release of AM. Removal of Ca2+ from the medium did not affect the spontaneous AM release, but abolished the PNS-induced inhibition of spontaneous AM release. Perfusion of 10nM calcitonin gene-related peptide (CGRP) or 0.1 microM capsaicin (inducer of CGRP release) inhibited significantly the spontaneous AM release. PNS (8 Hz)-induced inhibition of spontaneous AM release was antagonized by CGRP(8-37) (CGRP receptor antagonist). These results suggest that AM is mainly released from vascular smooth muscle cells of the rat mesenteric artery and endogenous or exogenous CGRP inhibits AM release.  相似文献   

8.
Prostaglandins released from isolated ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogenously supplied arachidonic acid was converted mainly to PGF2alpha which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF2alpha in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF2alpha production with arachidonic acid as the substrate was found to be 1.90 X 10(-4)M, while the Ki for aspirin was found to 2.47 X 10(-4)M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environment factors on the release of prostaglandins by the lung.  相似文献   

9.
The effect of three endothelin (ET) agonists [ET-1, ET-3, and sarafotoxin (STX6C)] on the nerve stimulation-induced release of norepinephrine (NE) and neuropeptide Y-immunoreactive compounds (NPY-ir) from the perfused mesenteric arterial bed of the rat as well as the effect on perfusion pressure were examined. ET-1, ET-3, and STX6C all produced a significant, concentration-dependent decrease in the evoked release of NPY-ir but had no effect on the release of NE. In contrast, all three ETs potentiated the nerve stimulation-induced increase in perfusion pressure. The inhibition of nerve stimulation-induced NPY-ir release by ET-1 was significantly blocked by the ET(A)/ET(B) antagonist PD-142893 and the ET(B) antagonist RES-701-1 but not by the ET(A) antagonist BQ-123. The potentiation of the nerve stimulation-induced increase in perfusion pressure by ET-1 was significantly blocked by PD-142893 and BQ-123 and attenuated by RES-701-1. Prior exposure of the preparation to indomethacin or meclofenamate failed to alter the attenuation of the evoked release of NPY-ir or the potentiation of the increase in perfusion pressure produced by ET-1 or ET-3. These results are consistent with the idea that sympathetic cotransmitters can be preferentially modulated by paracrine mediators at the vascular neuroeffector junction.  相似文献   

10.
I Miyamori  Y Takeda  T Yoneda  K Iki  R Takeda 《Life sciences》1991,49(18):1295-1300
We measured the ET-1 concentration in plasma and in the perfusate of the mesenteric arteries of rats treated with a therapeutic dose of IL-2 for 7 days (100000 U/Kg, iv.). The plasma ET-1 concentration in rats given IL-2 was 14.2 +/- 3.2 pg/ml which was significantly greater than that in the controls (2.5 +/- 0.4 pg/ml, P less than 0.05). The mesenteric arteries also released a significantly greater amount of ET-1 (29.5 +/- 1.6 pg/h) than that in controls (16.8 +/- 2.3 pg/h, P less than 0.01). The arterial blood pressure was significantly lower after IL-2 treatment than the pre-dosing level (P less than 0.05). It is concluded that IL-2 induces ET-1 release from the vascular wall, possibly as a result of reversible endothelial dysfunction caused by IL-2.  相似文献   

11.
Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.  相似文献   

12.
We investigated the effects of phenelzine and tranylcypromine on the release of prostacyclin, thromboxane A2, prostaglandin E2, and prostaglandin E1 from the isolated perfused rat mesenteric vascular bed. Perfusion of the preparation with phenelzine in concentrations of 15, 45, and 135 microM for 150 min led to attenuated release of all four prostaglandins measured. Inhibition generally occurred with the lowest dose used and was most prominent with the highest concentration. Tranylcypromine also decreased prostaglandin formation. However, low doses were not effective in the suppression of prostacyclin release. Both drugs had an inhibitory effect on production of prostaglandin E1, which is a metabolite of dihomo-gamma-linolenic acid, the precursor of arachidonic acid, but this was only shown to be significant with phenelzine. In this work we demonstrate that phenelzine and tranylcypromine have an inhibitory effect on the production of 2-series prostaglandins derived from arachidonic acid, and possibly a similar effect on prostaglandins of the 1-series derived from dihomo-gamma-linolenic acid.  相似文献   

13.
Prostaglandins E2 and I2 were compared with known antiarrhythmics for their actions against arrhythmias produced by occlusion of the left anterior descending coronary artery in the anaesthetised rat while PGI2 was also examined in the dog. PGI2 in the dog suppressed early arrhythmias produced during occlusion but did not influence those produced by occlusion-release or those occurring 24 hours after a permanent occlusion; none of the A,B,C or D series prostaglandins tested markedly reduced 24 hour arrhythmias. In the rat PGE2 was antiarrhythmic against early occlusion arrhythmias (30 minutes occlusion) in a dose related manner (infusions of 1-4 microgram/kg/min) whereas PGI2 infusions potentiated the arrhythmogenic effect of occlusion. PGE2 was as effective an antiarrhythmic as 10mg/kg Org. 6001 which was more effective in this test situtation than dl-propranolol. No obvious mechanisms for the actions of PGE2 or PGI2 were apparent although both agents lowered blood pressure and reduced the size of the occluded zone produced by ligation.  相似文献   

14.
15.
Using the isolated perfused rat pancreas PGE2 (1 MUM and 10 muM) had no effect on basal or glucose (10 and 20 mM)-induced insulin release (IR). PGF2 alpha stimulated basal IR at 1 muM and inhibited IR at 10 muM. The glucose-induced IR was unaffected by this PG. Furosemide (5 and 10 mM) led to a monophastic IR at low glucose (glu) and to a potentiation of IR at high glu. Only high indomethacin (Indo) (50 microgram/ml) inhibited glu-induced IR. The stimulatory effect of furosemide on IR could not be inhibited by indomethacin. However mepacrine (0.1 mM) abolished the furosemide effect. Also glu-induced IR was inhibited by mepacrine. Acetylsalicylic acid (30 mg/100 ml) had no significant influence on glu-induced IR. These findings provide evidence that phospholipase activation rather than increased PG synthesis might primarily be involved in the secretory process of insulin.  相似文献   

16.
The interaction of prostaglandin E2 (PGE2) and aspirin with the responses to peri-arterial stimulation (PS) and norepinephrine (NE) was studied in the isolated kidney of rabbit perfused through the renal artery at constant flow with Krebs' solution. NE and PS increased vascular perfusion pressure of kidney and caused a contraction on the isolated rabbit aortic strip superfused with the effluent from kidney. Addition of PGE2 to the perfusion medium decreased the PS-induced rise in perfusion pressure without changing the effect of exogenous NE. In contrast, addition of aspirin to the perfusion medium induced a potentiation of the response to PS but not to NE. These results suggest that PGE2 modulates the effect of PS probably by inhibiting the releases of NE from sympathetic nerve endings.  相似文献   

17.
Studies are reported on release of triglycerides during perfusion of livers of male Sprague-Dawley rats fed a fat-free diet or diets containing hydrogenated coconut oil or corn oil. Perfusions were carried out with Krebs-Ringer bicarbonate buffer containing albumin with and without infusion of oleate or linoleate. Infusion with sodium oleate or linoleate caused an accumulation of triglycerides in the livers of the corn oil-fed animals and stimulated the release of triglycerides into the perfusing medium. In similar experiments with essential fatty acid-deficient animals, which were fed fat-free diets or diets containing hydrogenated coconut oil, there was no increase in secretion of triglycerides into the perfusate, and the amount of triglyceride which accumulated in the liver was greater than in the livers of the control (corn oil-fed) animals. Tracer experiments with oleate-1-(14)C or linoleate-1-(14)C also showed that with livers of essential fatty acid-deficient animals, secretion of triglyceride into the perfusate was not stimulated by infusion of fatty acids into the perfusing medium. It is concluded that impairment of the secretion of triglycerides is a factor in the accumulation of fat in the livers of essential fatty acid-deficient animals.  相似文献   

18.
The effects of prostaglandin E1 (PGE1) and indomethacin on isolated fetal and neonatal lamb mesenteric artery responses to norepinephrine were investigated. PGE1 (1.5 micrometer) significantly reduced vasoconstriction responses to 0.5 to 5 micrometer norepinephrine. Indomethacin (1 micrometer) markedly potentiated the constrictor effects of 0.5 to 10 micrometer norepinephrine. PGE1 prevented the potentiating effect of indomethacin. Neither PGE1 nor indomethacin altered basal muscle tension. These results suggest that endogenous PGs modify adrenergic responses in the isolated mesenteric arteries of preterm and newborn lambs.  相似文献   

19.
The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle.  相似文献   

20.
We hypothesized that depression of liver function by norepinephrine can be improved by prostaglandin E1. Isolated perfused rat liver was selected as an experimental model, since the flow rate can be regulated in it. Twenty-one rats were randomly allocated to three groups: control, norepinephrine, and norepinephrine and prostaglandin E1 groups. The liver was perfused in a recirculating system at a constant flow rate of 20 ml/min. After administration of two milligrams of lidocaine in each group, lidocaine and monoethylglycinexylidide concentrations in the recirculating system were measured. Lidocaine pharmacokinetics were analyzed using the SAAM II program, including metabolic rate from lidocaine to monoethylglycinexylidide using time-concentration curves. Norepinephrine significantly increased perfusion pressure and the area under the time-concentration curve for lidocaine. Norepinephrine decreased the clearance and the elimination rate constant of lidocaine compared with those in the control group. Although administration of prostaglandin E1 after infusion of norepinephrine did not significantly change perfusion pressure, it significantly (p < 0.05) improved metabolic rate, clearance and the elimination rate constant of lidocaine in the isolated rat liver model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号