首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We previously showed that basic fibroblast growth factor (bFGF)-induced activation of protein kinase C (PKC) via phosphatidylinositol-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D suppresses interleukin-6 (IL-6) synthesis by bFGF itself in osteoblast-like MC3T3-E1 cells. In the present study, we further investigated the mechanism underlying the bFGF-induced IL-6 synthesis in MC3T3-E1 cells. bFGF time-dependently induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580, a specific inhibitor of p38 MAP kinase, suppressed the bFGF-induced IL-6 synthesis dose-dependently. The phosphorylation of p38 MAP kinase by bFGF was suppressed by TMB-8, an inhibitor of intracellular Ca(2+) mobilization, or the depletion of extracellular Ca(2+) with EGTA. A23187, a Ca-ionophore, stimulated the phosphorylation of p38 MAP kinase. SB203580 inhibited the A23187-induced synthesis of IL-6. 1-Oleoyl-2-acetyl-sn-glycerol, a synthetic diacylglycerol activating PKC, reduced the bFGF-induced IL-6 synthesis. 12-O-Tetradecanoylphorbol-13-acetate, an activator of PKC, attenuated the phosphorylation of p38 MAP kinase by bFGF, but did not affect the A23187-induced phosphorylation. These results strongly suggest that bFGF-induced IL-6 synthesis is mediated via p38 MAP kinase activation in osteoblasts, and that PKC acts at a point upstream from p38 MAP kinase.  相似文献   

6.
We previously reported that endothelin-1 (ET-1) stimulates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of ET-1 on the synthesis of vascular endothelial growth factor (VEGF) in these cells. ET-1 significantly stimulated VEGF secretion time-dependently 18 hours after the stimulation. The stimulatory effect was dose-dependent in the range between 0.1 nM and 0.1 micro;M. BQ123, an antagonist of endothelin(A) (ET(A)) receptor, inhibited the ET-1-induced VEGF secretion. The ET-1-induced VEGF secretion was suppressed by SB203580 and PD169316, inhibitors of p38 MAP kinase, but not PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, stimulated VEGF secretion. Calphostin C, a specific PKC inhibitor, suppressed the VEGF secretion by ET-1. TPA-induced VEGF secretion was suppressed by SB203580. Taken together, our results strongly suggest that ET-1 stimulates VEGF synthesis via ET(A) receptor in osteoblasts and that p38 MAP kinase is involved at a point downstream from PKC in the VEGF synthesis.  相似文献   

7.
The aim of this study was to determine the impact of lentiviral transduction on primary murine B cells. Studying B cell activities in vivo or using them for tolerance induction requires that the cells remain unaltered in their biological behavior except for expression of the transgene. As we show here, murine B cells can efficiently be transduced by lentiviral, VSV-G-pseudotyped vectors without the necessity of prior activation. Culture with LPS gave enhanced transduction efficiencies but led to the upregulation of CD86 and proliferation of the cells. Transduction of naive B cells by lentiviral vectors was dependent on multiplicity of infection and did not lead to a concomitant activation. Furthermore, the transduced cells could be used for studies in the NOD mouse system without altering the onset of diabetes. We conclude that lentiviral gene transfer into naive B cells is a powerful tool for manipulation of B cells for therapeutic applications.  相似文献   

8.
We showed previously that activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, demonstrating the importance of Raf-independent pathways in mediating Ras transformation. To assess the mechanism by which Raf-independent effector signaling pathways contribute to Ras-mediated transformation, we recently utilized representational difference analysis to identify genes expressed in a deregulated fashion by activated Ras but not Raf. One gene identified in these analyses encodes for alpha-tropomyosin. Therefore, we evaluated the mechanism by which Ras causes the downregulation of tropomyosin expression. By using RIE-1 cells that harbor inducible expression of activated H-Ras(12V), we determined that the downregulation of tropomyosin expression correlated with the onset of morphological transformation. We found that the reversal of Ras transformation caused by inhibition of extracellular signal-regulated kinase activation corresponded to a restoration of tropomyosin expression. Inhibition of p38 activity in Raf-expressing RIE-1 cells caused both morphological transformation and loss of tropomyosin expression. Thus, a reduction in tropomyosin expression correlated strictly with morphological transformation of RIE-1 cells. However, forced overexpression of tropomyosin in Ras-transformed cells did not reverse morphological or growth transformation, a finding consistent with the possibility that multiple changes in gene expression contribute to Ras transformation. We also determined that tropomyosin expression was low in two human tumor cell lines, DLD-1 and HT1080, that harbor endogenous mutated alleles of ras, but high in transformation-impaired, derivative cell lines in which the mutant ras allele has been genetically deleted. Finally, treatment with azadeoxycytidine restored tropomyosin expression in Ras-transformed RIE-1, HT1080, and DLD-1 cells, suggesting a role for DNA methylation in downregulating tropomyosin expression.  相似文献   

9.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in thrombus formation. We used p38alpha heterozygous (p38alpha+/-) mice and used ferric chloride (FeCl3)-induced carotid artery injury as a model of thrombus formation. The time to thrombotic occlusion induced by FeCl3 in p38alpha+/- mice was prolonged compared to that in wild-type (WT) mice. Platelets prepared from p38alpha+/- mice showed impairment of the aggregatory response to a low concentration of U46619, a thromboxane A2 analogue. Furthermore, platelets prepared from p38alpha+/- mice and activated by U46619 were poorly bound to fibrinogen compared with those from WT mice. Both the expression and activity of tissue factor induced by FeCl3 in WT mice were higher than those in p38alpha+/- mice. These results suggest that p38 plays an important role in thrombus formation by regulating platelet function and tissue factor activity.  相似文献   

10.
11.
12.
One of three major families of the mitogen-activated kinases (MAPK), p38 as well as JNK, has been shown to transduce extracellular stress stimuli into cellular responses by phospho-relay cascades. Among p38 families, p38alpha is a widely characterized isoform and the biological phenomena are explained by its kinase activity regulating functions of its downstream substrates. However, its specific contributions to each phenomenon are yet not fully elucidated. For better understanding of the role of MAPKs, especially p38alpha, we utilized newly established mouse fibroblast cell lines originated from a p38alpha null mouse, namely, a parental cell line without p38alpha gene locus, knockout of p38alpha (KOP), Zeosin-resistant (ZKOP), revertant of p38alpha (RKOP), and Exip revertant (EKOP). EKOP is smaller in size but grows faster than the others. Although comparable amounts of ERK and JNK are expressed in each cell line, ERK is highly phosphorylated in EKOP even in normal culture conditions. Serum stimulation after serum starvation led to ERK phosphorylation in RKOP and ZKOP, but not in EKOP as much. On the contrary, relative phosphorylation level of JNK to total JNK in response to UV was low in RKOP. And its phosphorylation as well as total JNK is slightly lower in EKOP. RKOP is less sensitive to UV irradiation as judged by the survival rate. Stress response upon UV or sorbitol stimuli, leading to mitogen activate protein kinase activated kinase 2 (MAPKAPK2) phosphorylation, was only observed in RKOP. Further experiments reveal that MAPKAPK2 expression is largely suppressed in ZKOP and EKOP. Its expression was recovered by re-introduction of p38alpha. The loss of MAPKAPK2 expression accompanied by the defect of p38alpha is confirmed in an embryonic extract prepared from p38alpha null mice. These data demonstrate that p38 signal pathway is regulated not only by phosphorylation but also by modulation of the expression of its component. Together, we have established cell lines that can be used in analyzing the functions of MAPKs, especially p38alpha, and show that p38 is indispensable for MAPKAPK2 expression.  相似文献   

13.
14.
Until now, a lack of inhibitors with high potency and selectivity in vivo has hampered investigation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We describe the design of skepinone-L, which is, to our knowledge, the first ATP-competitive p38 MAPK inhibitor with excellent in vivo efficacy and selectivity. Therefore, skepinone-L is a valuable probe for chemical biology research, and it may foster the development of a unique class of kinase inhibitors.  相似文献   

15.
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.  相似文献   

16.
We have found that lethal toxin from Clostridium sordellii, which specifically inactivates the low molecular weight G proteins Ras, Rap, and Rac, inhibits the activation of p38 mitogen-activated protein kinase (MAPK) by interleukin-1 (IL-1) in EL4.NOB-1 cells and primary fibroblasts. The target protein involved appeared to be Ras, because transient transfections with dominant negative RasN17 inhibited p38 MAPK activation by IL-1. Furthermore, transfections of cells with constitutively active RasVHa-activated p38 MAPK. Further evidence for Ras involvement came from the observation that IL-1 caused a rapid activation of Ras in the cells and from the inhibitory effects of the Ras inhibitors manumycin A and damnacanthal. Toxin B from Clostridium difficile, which inactivates Rac, Cdc42, and Rho, was without effect. Dominant negative versions of Rac (RacN17) or Rap (Rap1AN17) did not inhibit the response. Intriguingly, transfection of cells with dominant negative Rap1AN17 activated p38 MAPK. Furthermore, constitutively active Rap1AV12 inhibited p38 MAPK activation by IL-1, consistent with Rap antagonizing Ras function. IL-1 also activated Rap in the cells, but with slower kinetics than Ras. Our studies therefore provide clear evidence using multiple approaches for Ras as a signaling component in the activation of p38 MAPK by IL-1, with Rap having an inhibitory effect.  相似文献   

17.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

18.
19.
20.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in the pathogenesis of inflammation, using a mouse contact hypersensitivity (CHS) model induced by 2,4-dinitro-1-fluorobenzene (DNFB). Ear swelling was induced by challenge with DNFB, accompanied by infiltration of mononuclear cells, neutrophils, and eosinophils and a marked increase in mRNA levels of cytokines such as interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-1beta, IL-18, and tumor necrosis factor-alpha in the challenged ear skin. Both ear swelling and the number of infiltrated cells in DNFB-challenged ear skin were significantly inhibited by treatment with SB202190, a p38 inhibitor. Furthermore, the DNFB-induced expression of all cytokines except IL-4 was significantly inhibited by treatment with SB202190. Ribonuclease protection assay revealed that the mRNA levels of chemokines such as IP-10 and MCP-1 in ear skin were markedly increased at 24 h after challenge with DNFB. The induction of these chemokines was significantly inhibited by treatment with SB202190. In p38alpha +/- mice, both ear swelling and infiltration of cells induced by DNFB were reduced compared with those in wild-type mice. However, induction of cytokines by DNFB was also observed in p38alpha +/- mice, although the induction of IFN-gamma, IL-5, and IL-18 was typically reduced compared with that in wild-type mice. Challenge with DNFB slightly induced IP-10 and MCP-1 mRNA in p38alpha +/- mice, with weaker signals than those in SB202190-treated wild-type mice. These results suggest that p38 plays a key role in CHS and is an important target for the treatment of CHS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号