首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Morphology suggests that the Californian annualMicroseris douglasii is a monophyletic sister group to the other three diploid annuals ofMicroseris. Phylogenetic analysis of 44 inbred strains ofM. douglasii derived from 23 populations with 72 RAPD markers in the nuclear DNA strongly supports this phylogeny. However, 13 chloroplast RFLPs divideM. douglasii into four distinct groups. Two of these each share one or more cpRFLPs withM. bigelovii andM. pygmaea. Several hypotheses can explain the incongruence between nuclear and chloroplast phylogeny: (1) random sorting out of chloroplasts during phylogeny from a polymorphic pool, (2) cytoplasmic introgression from the related annualM. bigelovii intoM. douglasii after hybridization followed by elimination of theM. bigelovii nuclear genome. We suggest cytoplasmic introgression as the most likely origin. Possible remnants of nuclear introgression have been found in two populations ofM. douglasii that are polymorphic for chloroplast types. In these populationsM. bigelovii type chloroplast DNA seems to be accompanied by nuclear genes for flower color and leaf shape.  相似文献   

2.
The autogamous diploid annualMicroseris douglasii of California occurs in many isolated populations. The populations consist of one to many highly inbred biotypes. Morphological variation among populations usually is greater than within populations. In spite of the virtual absence of gene flow even within populations, genetically determined character differences are randomly distributed and associated throughout the range of the species. Recent evidence even suggests introgression of chloroplasts from the relatedM. bigelovii. Offspring families from 25 plants of a very variable population were raised and examined for segregation of morphological and molecular (RAPD) markers. All 25 original plants were completely homozygous for all markers, but each differed from all others at least in some markers. The population consisted of two genetically isolated groups of plants: a distinct inbred line (3 plants) and 22 plants with random associations of a common set of markers and characters, possibly recombinant inbreds from a past hybridization event. One of these 22 plants contained a chloroplast genome found inM. bigelovii, the other 24 plants a chloroplast genome found only inM. douglasii.  相似文献   

3.
The karyotypes of the three annuals,Microseris bigelovii, M. douglasii andM. pygmaea, consist of 2n = 18, small, submetacentric chromosomes. Length, centromere position, C-banding pattern, silver staining of NOR's, and the use of base specific fluorochromes, allow the identification of four of the nine chromosome pairs. The banding pattern ofM. bigelovii andM. pygmaea is identical, but intraspecific differences are found between strains ofM. douglasii.  相似文献   

4.
Seventy populations of North American annualMicroseris, Stebbinsoseris, andUropappus species were examined for chloroplast and nuclear ribosomal DNA restriction site variability to determine the origin of the allotetraploid speciesS. heterocarpa andS. decipiens. Previously identified chloroplast DNA restriction site variants were used in concert with restriction site variation forNco I in the nuclear-encoded ribosomal DNA repeat. The presence of two, mutually exclusive restriction site gains were observed in diploid populations ofM. douglasii; these same variants were also found in populations of allotetraploidS. heterocarpa, indicating mutiple origins of this species from different maternal diploid populations ofM. douglasii. Variation in the rDNA repeat between the diploid annual species and the putative paternal genome ofU. lindleyi was found to be additive inS. heterocarpa. A similar relationship was observed for the origin ofS. decipiens; cpDNA restriction site variants found inM. bigelovii andM. douglasii were present inS. decipiens. The rDNANco I variants also were additive in this purported allotetraploid. These results confirm the reticulate evolutionary pattern inStebbinsoseris and provide another example of multiple origins of intergeneric allopolyploids.  相似文献   

5.
The reduction of inner (adaxial) pollen sacs (microsporangia, MS) as a diagnostic character for the three asteracean species, Microseris bigelovii, Microseris elegans and Microseris pygmaea, was analysed in an interspecific cross between Microseris douglasii and Microseris bigelovii with 4 MS and 2 MS, respectively, using the average number of MS per plant as a quantitative character. A previous QTL (Quantitative Trait Locus) analysis had revealed one major QTL (3B) and three modifier QTLs (3A, 4A, 7A) with epistatic effects only on the homozygous recessive 2 MS genotype of QTL 3B. Here we performed a bulked segregant analysis on four 2 MS and four 4 MS DNA-bulks with 407 EcoRI/MseI AFLP-primer combinations each. In this way additional AFLP markers were mapped close to QTL 3B and QTL 3A. Three of them were converted to SCAR (Sequence Characterized Amplified region) markers. All markers were tested in natural populations of the disporangiate (2 MS) species M. bigelovii, M. elegans and M. pygmaea, and in different populations of tetrasporangiate (4 MS) M. douglasii. The marker distribution suggests that locus 3B mutated in a progenitor of the disporangiate species. QTL 3A has evolved in the 2 MS background of the major gene in the disporangiate species. Since M. pygmaea and M. bigelovii are the sister group to M. elegans, the 4 MS genotype for (markers of) QTL 3A in M. pygmaea populations is most likely due to a back mutation to the 4 MS state and could explain the slight instability of the 2 MS phenotype in this species.Communicated by O. Savolainen  相似文献   

6.
Nuclear DNA content varies over 20% within the diploid (2n = 18) species M. douglasii and M. bigelovii. Two different intraspecific crosses were made between M. douglasii biotypes which differed by about 10% in 2C nuclear DNA content. The F2 progeny of one intraspecific cross showed no striking evidence of segregation for DNA content. The mean DNA contents of F2 progeny from two sister hybrids from the second intraspecific cross were significantly different at the 1% level. An interspecific cross was made between biotypes of M. douglasii and M. bigelovii that differed by approximately 10% in DNA amount. The 12 F1 progeny did not cluster around the parental midpoint, but instead encompassed nearly the entire range between the parental means. The five families of F2 progeny studied each had a mean DNA content corresponding to that of the particular F1 from which they were derived, indicating that the F1 plants were not of identical DNA content. The results of this study suggest that DNA sequences which account for the DNA content differences among the plants are unstable and can undergo deletion or amplification in a hybrid. The altered DNA content may be heritably stable and show little or no segregation in the F2 progeny.  相似文献   

7.
Morphological, geographical and ecological evidence suggests thatEncelia virginensis is a true-breeding diploid species derived from hybrids ofE. actoni andE. frutescens. To test this hypothesis, we examined the chloroplast and nuclear DNA of severalEncelia species. PCR amplification targeted three separate regions of chloroplast DNA:trnK-2621/trnK-11,rbcL/ORF106, andpsbA3/TrnI-51, which amplify 2600bp, 3300bp and 3200bp fragments respectively. Restriction fragment analysis of chloroplast DNA revealed no variation that could be used to discriminate between the parent species. A RAPD analysis using 109 dekamer primers was used to analyze the nuclear genome.Encelia actoni andE. frutescens were distinguished by several high-frequency RAPD markers. In populations ofE. virginensis, these markers were detected in varying proportions, and no unique markers were found. Evidence from the nuclear genome supports the hypothesis thatE. virginensis is of hybrid origin. ThatE. virginensis may have arisen by normal divergent speciation followed by later introgression remains a possibility, however, and is not formally ruled out here. Diploid hybrid speciation inEncelia differs from other documented cases in that there are no discernible chromosome differences between the species, and all interspecific hybrids are fully fertile. In addition, apparent ecological selection against backcross progeny provides an external barrier to reproduction between F1 progeny and the parental species. These characteristics suggest that hybrid speciation inEncelia may represent an alternative model for homoploid hybrid speciation involving external reproductive barriers. In particular, this may be the case for other proposed diploid hybrid taxa that also exhibit little chromosomal differentiation and have fertile F1s.  相似文献   

8.
Under certain conditions inBotrydiopsis alpina stacks of chloroplasts are formed. They consist of up to 8 elements. In contrast to what is known from other algae in zoosporangia of this species and ofHeterococcus caespitosus, stigmata are formed in early developmental stages. They are reproduced together with the chloroplasts, in which they occupy a position at the edge and near the existing or future incision. At the side of the old stigma a new one is formed, and partitioning of the chloroplast between these two leads to their distribution to the daughter chloroplasts. Young daughter cells in the zoosporangia ofBotrydiopsis alpina contain one chloroplast which undergoes a last unequal division giving rise to one astigmate and usually somewhat smaller and to one stigmate chloroplast. In both species the capacity for locomotion may be suppressed, the presumptive zoospores thereby becoming aplanospores. Autospores in the proper sense were not observed. Their development quite generally is different from that of aplanospores (and zoospores), and both types of spores should be distinguished.
Herrn Professor Dr.Lothar Geitler zum 80. Geburtstag in Verehrung gewidmet.  相似文献   

9.
Aerides vandarum and Vanda stangeana are two rare and endangered vandaceous orchids with immense floricultural traits. The intergeneric hybrids were synthesized by performing reciprocal crosses between them. In vitro germination response of the immature hybrid embryos was found to be best on half-strength Murashige and Skoog medium supplemented with 20% (v/v) coconut water/liquid endosperm from tender coconut. Determination of hybridity was made as early as the immature seeds or embryos germinated in vitro, using randomly amplified polymorphic DNA (RAPD) markers. Out of 15 arbitrarily chosen decamer RAPD primers, two were found to be useful in amplification of polymorphic bands specific to the parental species and their presence in the reciprocal crosses. However, a decisive profile that can identify the reciprocal crosses could not be provided by RAPD. Amplification of the trnL-F non-coding regions of chloroplast DNA of the parent species and hybrids aided easy identification of the reciprocal crosses from the fact that maternal inheritance of chloroplast DNA held true for these intergeneric hybrids. Subsequent restriction digestion of the polymerase chain reaction (PCR) amplified trnL-F non-coding regions of chloroplast DNA also consolidated the finding. Such PCR-based molecular markers could be used for early determination of hybridity and easy identification of the reciprocal crosses.  相似文献   

10.
Brassica carinata (bbcc) was resynthesized by protoplast fusion betweenB. nigra (bb) andB. oleracea (cc). In two fusion experiments 64 hybrid plants were obtained and identified to be true hybrids by isoenzyme analysis, nuclear DNA content, chromosome number, and intermediate morphology. Of these plants 56% were normal amphidiploids with 2n=34 chromosomes and a DNA content equivalent to that of naturalB. carinata. The remaining plants were polyploid, morphologically abnormal, and infertile. The majority of the hybrids contained both chloroplasts and mitochondria fromB. nigra, but some plants combined chloroplast and mitochondria from the different progenitors. Hybrids with a DNA content equivalent to that ofB. carinata had a wide range of male fertility (4–98%), but consistently low female fertility. Only a few selfed seed were produced, but these germinated and grew into vigorous plants.Salaries and research support provided by State and Federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University. Journal Article No. 296-92  相似文献   

11.
An investigation of randomly amplified polymorphic DNA (RAPD) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) marker distribution was made for two well-characterised hybrids and their parents,Leucaena leucocephala andL. esculenta andParkinsonia aculeata andCercidium praecox. Three chloroplast DNA (cpDNA) markers identified the maternal parent of eachL. leucocephala ×L. esculenta hybrid. Fifteen species-diagnostic RAPD markers (invariant in one taxon and absent from the other) were always present in theLeucaena hybrid and assumed to be of nuclear origin, whilst three RAPD markers showed expression patterns identical to the cpDNA markers and were assumed to be of organellar origin. No RAPD or PCR-RFLP taxon-diagnostic markers were discovered for eitherP. aculeata orC. praecox. However, 21 RAPD markers were species-specific (polymorphic within one taxon but absent from the other) and Southern analysis indicated that none of the markers were of organellar origin. Only 67% additivity of markers specific toP. aculeata andC. praecox was demonstrated in the hybrids between these two species, whilst inLeucaena 97% additivity was demonstrated. Differences between the two hybridising situations were related to the behaviour of the molecular markers and the biology of the species.  相似文献   

12.
A simple protocol for DNA isolation from dry roots ofBerberis lycium is described. Four-year-old dry roots are used, and the isolated DNA is suitable for analysis by means of restriction enzyme digestion and random amplification of polymorphic DNA (RAPD). The method involves a modified CTAB procedure using 1% PVP to remove polysaccharides and purification using low-melting-temperature agarose. DNA is amplified by means of PCR using 10-mer random primers from Operon Biotechnologies, Inc. (USA), and DNA samples are digested withTaq I,Hind III andEcoR I and examined on agarose gels. The RAPD reaction is performed according to the 1990 protocol by Williams et al.  相似文献   

13.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

14.
Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA ofChlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains ofChlamydomonas (C. reinhardtii andC. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, “P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, “P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely “sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a "unique" new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a “complex path” of copy-choice replication.  相似文献   

15.
To apply random amplified polymorphic DNA for analysis of phylogenetic relationships, we used 34 synthetic oligonucleotides as primers to examine interspecific and intraspecific variations among 18 genotypes, nine species ofNicotiana. The nine species used in this study belong to sectionsTomentosae andAlatae. In addition, we attempted to clarify the taxonomic position ofN. sylvestris. A total of 354 distinct DNA fragments were obtained by polymerase chain reaction. Pair-wise comparisons of unique and shared amplification products were used to generate Jaccard's similarity coefficients and Nei and Li's similarity coefficients with the computer software of numerical taxonomy and multivariate analysis system. On the basis of the dendrogram constructed with the similarity coefficients, the 18Nicotiana genotypes were divided into two clusters. The classification analyzed by RAPD markers is in accordance with the classification of Goodspeed thatN. sylvestris is a member of sectionAlatae.  相似文献   

16.
Three interspecific crosses were developed using Cicer arietinum (ICC 4918) as the female parent and wild Cicer species [C. reticulatum - JM 2100, JM 2106 and C. echinospermum - ICCW 44] as the male parent. Cicer arietinum (ICC 4918) × C. reticulatum (JM 2100) cross produced the largest number of F2 plants and was chosen for linkage mapping using Random Amplified Polymorphic DNA (RAPD) primers. A partial linkage map was constructed based upon the segregation of 36 RAPD markers obtained by amplification using 35 primers. The linkage map consists of two linkage groups with 17 linked markers covering a total of 464.9 cM. Analyses also revealed association of three morphological traits with linked RAPD markers. Out of seven morphological traits tested for association with linked markers in the segregating plants, four Quantitative trait loci (QTL) were detected for the trait leaf length and three QTLs each for the traits leaf width and erect plant habit.  相似文献   

17.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

18.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

19.
Summary The nuclei and cytoplasm ofN. gossei andN. tabacum are compatible to the extent that reciprocal, interspecific F1 hybrids can be produced by conventional breeding techniques. Conditions were established in which manyN. gossei isolated chloroplasts could be seen by phase and fluorescence microscopy to adhere to 40% of the population of protoplasts obtained from white tissue of variegatedN. tabacum plants and to remain attached after washing the protoplasts. Chloroplasts also could be seen to enter the interior of the protoplasts. After treating albino protoplasts withN. gossei chloroplasts, the protoplasts were subjected to further conditions whereby 65 calluses containing shoots developed. TwentyN. tabacum protoplasts not treated with foreign chloroplasts also produced calluses with shoots to serve as a control. All calluses developed chlorophyll irrespective of whether or not the albino protoplasts had been treated with isolatedN. gossei chloroplasts. The Fraction 1 protein ofN. tabacum has a different electrophoretic mobility from the protein ofN. gossei or anN. gossei xN. tabacum F1 hybrid. The Fraction 1 protein large subunit is coded by chloroplast DNA, whereas the small subunit is coded by nuclear DNA. Fraction 1 protein was isolated from the variegated shoots of the 65 calluses obtained after treating albino protoplasts with foreign chloroplasts. Immunoelectrophoresis demonstrated the protein from each callus to have a mobility identical toN. tabacum protein. Therefore, under circumstances highly favorable for the direct transfer ofN. gossei isolated chloroplasts (and possibly nuclei also) intoN. tabacum protoplasts, no evidence was obtained to suggest that genetic information contained in the isolated foreign organelles was being translated into the polypeptides of either the large or small subunits of Fraction 1 protein contained in newly differentiated leaves derived from the protoplasts. Supported by Research Grant PCM-75-07368 from the National Science Foundation.  相似文献   

20.
A flattened discoid flagellate collected from the Seto Inland Sea, Japan, has been examined by light and electron microscopy. This alga agrees well withClisthodiscus luteus Carter. It has two heterodynamic flagella emerging from a furrow on the upward side of the cell that contains six to 13 yellow-green parietal chloroplasts. It does not rotate but smoothly glide while swimming. The cell has a thin periplast lying between the plasmalemma and chloroplasts. Neither lipid bodies nor mucocysts are seen in the periplast. The pyrenoid matrix being free from thylakoids is penetrated by several cytoplasmic canals from various directions. There are no vesicles of periplastidal network in the narrow space between chloroplast envelope and chloroplast ER. The ultrastructural features ofO. luteus are unique, sharing certain characters with the raphidophycean algae but others withPseudopedinella pyriformis, a unique member of the Chrysophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号