首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent coupling of bovine rhodopsin to CPG-thiol glass was used for separation of CNBr peptides. It is shown that cysteine residues 322 and 323 in the C-terminal cytoplasmic fragment of rhodopsin are modified with palmitic acid.  相似文献   

2.
Effect of reversible removal of Mn on the amplitude of photoinduced absorbance changes (ΔA) related to photooxidation of chlorophyll P(680) in pea oxygen -- evolving photosystem 2 (PS(2)) preparations has been studies. It is shown that after complete removal of Mn the amplitude of ΔA is increased by a factor of 7--8 and it is decreased again to the initial value upon subsequent addition of MnCl(2). This reactivation needs four Mn atoms per one reaction centre (RC) of PS(2). In the presence of 3 μM MgCI(2) the reactivation requires two Mn atoms per RC of PS2. The obtained data confirm our earlier conclusion that a four-atomic Mn centre functions in the donor side of PS(2); two of them can be replaced by either Mg(2+) or other divalent metals.  相似文献   

3.
The effect of reversible extraction of Mn on ESR signal II arising from the oxidized secondary electron donor (Z+) and the ESR doublet signal related to reduced spin-coupled pheophytin (pheo -) and "primary" electron acceptor (PA- -Fe (2+)) has been studied in oxygen evolving preparations of the photosystem 2. It is demonstrated that Mn extraction does not affect both dark and photoinduced ESR signal II and ESR doublet. A conclusion is made that Mn is not a component of the secondary electron donor Z of the Photosystem 2 and its complete removal has no effect on the exchange interaction of Pheo(-) and the PQ(-) -Fe(2+) complex.  相似文献   

4.
5.
6.
The influence of the histidine axial ligand to the PD1 chlorophyll of photosystem II on the redox potential and spectroscopic properties of the primary electron donor, P680, was investigated in mutant oxygen-evolving photosystem II (PSII) complexes purified from the thermophilic cyanobacterium Thermosynechococcus elongatus. To achieve this aim, a mutagenesis system was developed in which the psbA1 and psbA2 genes encoding D1 were deleted from a His-tagged CP43 strain (to generate strain WT*) and mutations D1-H198A and D1-H198Q were introduced into the remaining psbA3 gene. The O2-evolving activity of His-tagged PSII isolated from WT* was found to be significantly higher than that measured from His-tagged PSII isolated from WT in which psbA1 is expected to be the dominantly expressed form. PSII purified from both the D1-H198A and D1-H198Q mutants exhibited oxygen-evolving activity as high as that from WT*. Surprisingly, a variety of kinetic and spectroscopic measurements revealed that the D1-H198A and D1-H198Q mutations had little effect on the redox and spectroscopic properties of P680, in contrast to the earlier results from the analysis of the equivalent mutants constructed in Synechocystis sp. PCC 6803 [B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F. Vermaas, D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281]. We conclude that the nature of the axial ligand to PD1 is not an important determinant of the redox and spectroscopic properties of P680 in T. elongatus.  相似文献   

7.
After a complete removal of Mn from pea subchloroplast photosystem-II (PS II) preparations the electron phototransfer and oxygen evolution are restored upon addition of Mn2+ and Ca2+. Pre-illumination of the sample in the absence of Mn2+ leads to photoinhibition (PI) — irreversible loss of the capability of PS II to be reactivated by Mn2+. The effect of PI is considerably decreased in the presence of Mn2+ (4 Mn atoms per reaction center of PS II) and it is increased in the presence of ferricyanide or p-benzoquinone revealing the oxidative nature of the photoeffect. PI results in suppression of oxygen evolution, variable fluorescence, photoreduction of 2,6-dichlorophenol indophenol from either water or diphenylcarbazide. However, photooxidation of chlorophyll P680, the primary electron donor of PS II as well as dark and photoinduced EPR signal II (ascribed to secondary electron donors D 1 and Z) are preserved. PI is accompanied by photooxidation of 2–3 carotenoid molecules per PS II reaction center (RC) that is accelerated in the presence of ferricyanide and is inhibited upon addition of Mn2+ or diuron. The conclusion is made that PI in the absence of Mn leads to irreversible oxidative inactivation of electron transfer from water to RC of PS II which remains photochemically active. A loss of functional interaction of RC with the electron transport chain as a common feature for different types of PS II photoinhibition is discussed.Abbreviations A photoinduced absorbance changes - DPC diphenylcarbazide - DPIP 2,6-dichlorophenol indophenol - F o constant fluorescence of chlorophyll - F photoinduced changes of Chl fluorescence yield - Mn manganese - P680 the primary electron donor in PS II - PI photoinhibition - PS II photosystem II - Q the primary (quinone) electron acceptor in PS II - RC reaction center  相似文献   

8.
The influence of Mn on saturation curves of ESR spectra of Ph(-) and P(+)(680) at 1-200K in samples with different content of Mn has been studied. An analysis of these data and those on photoinduced changes of fluorescence yield of chlorophyll leads to the conclusion that the Mn-containing centre in Photosystem 2 is a cluster of 4 Mn atoms, two of which can be replaced by Mg(2+) or any other divalent metal. The distances between Mn Na Ph as well as between Mn and P(680) have been estimated.  相似文献   

9.
Diethylhydroxylamine, when added to beet spinach thylakoid membranes in the reaction mixture enhanced both photosystem II mediated dichlorophenolindophenol photoreduction and whole chain electron transport supported by methyl viologen. Diethylhydroxylamine supports dichlorophenolindophenol photoreduction when oxygen evolving complex is inactivated by hydroxylamine washings. All the electron transport assays were found to be highly sensitive to diuron, indicating that diethylhydroxylamine donates electrons to the photosystem II before the herbicide binding site. The stimulation of the photochemical activity by diethylhydroxylamine is not solely due to its action as an uncoupler. It was also observed that the action of diethylhydroxylamine was not altered by preincubations of thylakoids in light in the presence of diethylhydroxylamine. Also, thylakoid membranes did not lose their benzoquinone Hill activity by the pre-incubations with diethylhydroxylamine either in light or in dark. Thus, unlike the photosystem II electron donor, hydroxylamine, diethylhydroxylamine was found to donate electrons without the inactivations of oxygen evolving complex. It is suggested that diethylhydroxylamine is a useful electron donor to the photosystem II.  相似文献   

10.
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q(Y) and in the Q(X) absorption regions. The data could be described by a biphasic charge separation. In untreated reaction centers the major component had a time constant of 3.1 ps and the minor component 33 ps. After exchange, time constants of 0.8 and 22 ps were observed. The acceleration of the fast phase is attributed in part to the redistribution of electronic transitions of the six central chlorin pigments induced by replacement of the inactive pheophytin. In the modified reaction centers, excitation of the lowest energy Q(Y) transition produces an excited state that appears to be localized mainly on the accessory chlorophyll in the active branch (B(A) in bacterial terms) and partially on the active pheophytin H(A). This state equilibrates in 0.8 ps with the radical pair. B(A) is proposed to act as the primary electron donor also in untreated reaction centers. The 22-ps (pheophytin-exchanged) or 33-ps (untreated) component may be due to equilibration with the secondary radical pair. Its acceleration by H(B) exchange is attributed to a faster reverse electron transfer from B(A) to. After exchange both and are nearly isoenergetic with the excited state.  相似文献   

11.
Sano  Yuko  Endo  Kaichiro  Tomo  Tatsuya  Noguchi  Takumi 《Photosynthesis research》2015,125(1-2):105-114
Photosynthesis Research - Acaryochloris marina is a unique cyanobacterium that contains chlorophyll (Chl) d as a major pigment. Because Chl d has smaller excitation energy than Chl a used in...  相似文献   

12.
Fourier transform infrared spectroscopy (FTIR) difference spectroscopy in combination with deuterium exchange experiments has been used to study the photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Comparison of (P740(+)-P740) and (P700(+)-P700) FTIR difference spectra show that P700 and P740 share many structural similarities. However, there are several distinct differences also: 1), The (P740(+)-P740) FTIR difference spectrum is significantly altered upon proton exchange, considerably more so than the (P700(+)-P700) FTIR difference spectrum. The P740 binding pocket is therefore more accessible than the P700 binding pocket. 2), Broad, "dimer" absorption bands are observed for both P700(+) and P740(+). These bands differ significantly in substructure, however, suggesting differences in the electronic organization of P700(+) and P740(+). 3), Bands are observed at 2727(-) and 2715(-) cm(-1) in the (P740(+)-P740) FTIR difference spectrum, but are absent in the (P700(+)-P700) FTIR difference spectrum. These bands are due to formyl CH modes of chlorophyll d. Therefore, P740 consists of two chlorophyll d molecules. Deuterium-induced modification of the (P740(+)-P740) FTIR difference spectrum indicates that only the highest frequency 13(3) ester carbonyl mode of P740 downshifts, indicating that this ester mode is weakly H-bonded. In contrast, the highest frequency ester carbonyl mode of P700 is free from H-bonding. Deuterium-induced changes in (P740(+)-P740) FTIR difference spectrum could also indicate that one of the chlorophyll d 3(1) carbonyls of P740 is hydrogen bonded.  相似文献   

13.
The low-temperature (77 K) phosphorescence of chlorophyll (Chl) in the reaction centres (D1D2-cyt b559-particles) and the core complexes of photosystem II isolated from higher plants was studied. Two phosphorescence spectral bands with the emission maxima at 950 and 977 nm, excitation maxima at 666 and 675-680 nm, and the lifetimes equal to 2 and 1.5 ms, respectively, were registered. The data indicate that the phosphorescence corresponds to the triplet Chl a molecules spatially separated from carotenoids. In samples treated by potassium ferricyanide and frozen under illumination by red light, the intensities of both bands were reduced, but the decrease of the short-wavelength 950-nm band was much more pronounced. This allows an assumption that the short-wavelength phosphorescence belongs to Chl a molecules, which are more accessible for ferricyanide because they are located on the surface of the chlorophyll-protein complexes, whereas the long-wavelength phosphorescence is emitted by the Chl molecules located inside the D1D2 heterodimer and therefore, is more protected by protein macromolecules.  相似文献   

14.
Upon addition of hydroxylamine to chloroplasts or photosystem II preparations, the EPR signal of Z? disappears and a new signal is observed. From its shape and g-value this signal is identified with the oxidized reaction center chlorophyll, P680+. The decay of P680+ occurs with a halftime of ? 200 μs and apparently is the result of a back reaction with the reduced form of the primary acceptor, QA. This mode of hydroxylamine inhibition is reversible. These observations indicate that hydroxylamine, in addition to its well known inhibitory action on the oxygen evolving complex, is also able to disrupt physiological electron flow to P680 itself.  相似文献   

15.
Jeans C  Schilstra MJ  Klug DR 《Biochemistry》2002,41(15):5015-5023
The temperature dependence for the reduction of the oxidized primary electron donor P680(+) by the redox active tyrosine Y(Z) has been studied in oxygen-evolving photosystem II preparations from spinach. The observed temperature dependence is found to vary markedly with the S-state of the manganese cluster. In the higher oxidation states, S(2) and S(3), sub-microsecond P680(+) reduction exhibits activation energies of about 260 meV. In contrast, there is only a small temperature dependence for the sub-microsecond reaction in the S(0) and S(1) states (an activation energy of approximately 50 meV). Slower microsecond components of P680(+) reduction show an activation energy of about 250 meV which, within experimental error, is independent of the oxidation state of the Mn cluster. By combining these values with measurements of DeltaG for electron transfer, the reorganization energies for each component of P680(+) reduction have been calculated. High activation and reorganization energies are found for sub-microsecond P680(+) reduction in S(2) and S(3), demonstrating that these electron transfers are coupled to significant reorganization events which do not occur in the presence of the lower S-states. One interpretation of these results is that there is an increase in the net charge on the manganese cluster on the S(1) to S(2) transition which acts as a barrier to electron transfer in the higher S-states. This argues against the electroneutrality requirement for some models of the function of the manganese cluster and hence against a role for Y(Z) as a hydrogen abstractor on all S-state transitions. An alternative or additional possibility is that there are proton (or other ion) motions in the sub-microsecond phases in S(2) and S(3) which contribute to the large reorganization energies observed, these motions being absent in the S(0) and S(1) states. Indeed charge accumulation may directly cause the increased reorganization energy.  相似文献   

16.
《Plant Science Letters》1978,11(1):11-18
This paper is concerned with the light-induced oxidation-reductions of chlorophyll P-700 in ‘ligh’ digitonin-fractionated pea subchloroplast particles enriched in PS I. In the absence of exogenous cofactors of cyclic and non-cyclic electron transfer, the dark recovery of P-700 after its oxidation in the light occurs slowly. Upon addition of Cl2 Ind (2,6-dichlorophenol indophenol) it proceeds considerably faster, the steady-state level of P-700 oxidation being reduced and the saturation level being shifted towards higher intensities of actinic light. MV (methylviologen) has an opposite effect. Similar behaviour of the dependence of P-700 oxidation on light was detected after the addition of both uncouplers and substrates of phosphorylation. The subchloroplast fragments, in the presence of Cl2Ind-H2, are capable of carrying out the electron transport-coupled processes of energy transduction. The site of coupling is supposed to be located at the level of the acceptors of the photosynthetic electron transport chain. This site can arise artificially via a lipophylic cofactor shuttle as a consequence of a vectorial orientation of functional components of the electron transport chain in photosynthetic membranes.  相似文献   

17.
18.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

19.
Photosystem II contains two redox-active tyrosines. One of these, YZ, reduces the reaction center chlorophyll, P680, and transfers the oxidizing equivalent to the oxygen-evolving complex. The second, YD, has a long-lived free radical state of unknown function. We recently established that YD is Tyr-160 of the D2 polypeptide by site-directed mutagenesis of a psbD gene in the unicellular cyanobacterium Synechocystis 6803 [Debus, R. J., Barry, B. A., Babcock, G. T., & McIntosh, L. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 427-430]. YZ is most likely the symmetry-related Tyr-161 of the D1 polypeptide. To test this hypothesis, we have changed Tyr-161 to phenylalanine by site-directed mutagenesis of a psbA gene in Synechocystis. The resulting mutant assembles PSII, as judged by its ability to produce the stable Y+D radical, but is unable to grow photosynthetically and exhibits altered fluorescence properties. The nature of the fluorescence change indicates that forward electron transfer to P+680 is disrupted in the mutant. These results provide strong support for our identification of Tyr-161 in the D1 polypeptide with YZ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号