首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken ovalbumin (OVA) exists as mono-N-glycosylated form with a carbohydrate chain on Asn-292 in egg white, despite the possession of two potential N-glycosylation sites. To investigate the roles of N-glycosylation of OVA, we constructed a series of N-glycosylation mutants deleted N-glycosylation site and compared the secretion level of the mutants in Pichia pastoris. N292Q and N292/311Q mutants resulted in greater lowering of the secretion level as compared with wild-type, whereas N311Q mutant was secreted in approximately equal amounts to wild-type. However, secretion of wild-type and N311Q mutant was inhibited completely by tunicamycin treatment. All the N-glycosylation mutants have been expressed in the cells, as well as wild-type. Circular dichroism and fluorescence spectra of secreted N311Q mutant were almost identical to those of wild-type, while those of N292Q and N292/311Q mutants were different from wild-type; and, N292Q and N292/311Q mutants showed considerably lower denaturation temperature than wild-type. The results indicate that N-glycosylation at Asn-292 of OVA is required for the folding and secretion.  相似文献   

2.
Human 1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and hFucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced by glutamine. Western blotting analyses demonstrated that both sites in hFucTV were glycosylated, whereas in hFucTVI only one of the sites (Asn91) was glycosylated. All the single mutants and the hFucTVI N46Q/N91Q double mutant exhibited enzyme activities that did not differ considerably from the wt activities. However, the enzyme activity of the hFucTV N60Q/N105Q double mutant was reduced to approximately 40% of the wt activity. In addition, castanospermine treatment diminished the enzyme activity and hence trimming of the N-linked glycans are required for expression of full enzyme activity of both hFucTV and -VI. The present study demonstrates that both of the N-terminal potential N-glycosylation sites in hFucTV and one of the sites in hFucTVI are glycosylated. Individually, their glycosylation does not contribute considerably to expression of enzyme activity. However, elimination of both sites in hFucTV reduces the enzyme activity.  相似文献   

3.
The aim of this study was to determine the role of N-linked glycosylation in protein stability, intracellular trafficking, and bile acid transport activity of the bile salt export pump [Bsep (ATP-binding cassette B11)]. Rat Bsep was fused with yellow fluorescent protein, and the following mutants, in which Asn residues of putative glycosylation sites (Asn(109), Asn(116), Asn(122), and Asn(125)) were sequentially replaced with Gln, were constructed by site-directed mutagenesis: single N109Q, double N109Q + N116Q, triple N109Q + N116Q + N122Q, and quadruple N109Q + N116Q + N122Q + N125Q. Immunoblot and glycosidase cleavage analysis demonstrated that each site was glycosylated. Removal of glycans decreased taurocholate transport activity as determined in polarized MDCK II cells. This decrease resulted from rapid decay of the mutant Bsep protein; biochemical half-lives were 3.76, 3.65, 3.24, 1.35, and 0.52 h in wild-type, single-mutant, double-mutant, triple-mutant, and quadruple-mutant cells, respectively. Wild-type and single- and double-mutant proteins were distributed exclusively along the apical membranes, whereas triple- and quadruple-mutant proteins remained intracellular. MG-132 but not bafilomycin A(1) extended the half-life, suggesting a role for the proteasome in Bsep degradation. To determine whether a specific glycosylation site or the number of glycans was critical for protein stability, we studied the protein expression of combinations of N-glycan-deficient mutants and observed that Bsep with one glycan was considerably unstable compared with Bsep harboring two or more glycans. In conclusion, at least two N-linked glycans are required for Bsep protein stability, intracellular trafficking, and function in the apical membrane.  相似文献   

4.
Thrombopoietin (TPO) is a cytokine that primarily stimulates megakaryocytopoiesis and thrombopoiesis. TPO has a unique C-terminal tail peptide of about 160 amino acids that consists mostly of hydrophilic residues and contains six N-linked sugar chains. In order to investigate the biological function of the C-terminal domain, two series of mutations were performed. One is systematic truncation from the C terminus. Another is elimination of N-glycosylation sites in the C-terminal domain by Asn to Gln mutations. After the mutant proteins were expressed by mammalian cells, it was found that the elimination of the N-linked sugar sites did not affect the biological activity, whereas truncation of the C-terminal domain resulted in elevation of in vitro activity up to 4-fold. The C-terminal peptide itself was found to inhibit the in vitro activity. Moreover, both the C-terminal truncation and the elimination of the N-glycosylation sites decreased the secretion level progressively down to (1)/(10) that of wild type, and the amount of the mutant left in the cell increased. The N-glycosylation in the C-terminal region was found to be important for secretion of TPO. Among six N-glycosylation sites in the C-terminal region, two locations, Asn-213 and Asn-234, were found to be critical for secretion, and two other locations, Asn-319 and Asn-327, did not affect the secretion.  相似文献   

5.
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.  相似文献   

6.
The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1 is engaged both in viral attachment and viral immune evasion mechanisms in the infected host. Besides several N-linked glycans, gC-1 contains numerous O-linked glycans, mainly localized in two pronase-resistant clusters in the N-terminal domain of gC-1. In the present study we construct and characterize one gC-1 mutant virus, in which two basic amino acids (114K and 117R) in a putative O-glycosylation sequon were changed to alanine. We found that this modification did not modify the N-linked glycosylation but increased the content of O-linked glycans considerably. Analysis of the O-glycosylation capacity of wild-type and mutant gC-1 was performed by in vitro glycosylation assays with synthetic peptides derived from the mutant region predicted to present new O-glycosylation sites. Thus the mutant peptide region served as a better substrate for polypeptide GalNAc-transferase 2 than the wild-type peptide, resulting in increased rate and number of O-glycan attachment sites. The predicted increase in O-linked glycosylation resulted in two modifications of the biological properties of mutant virus-that is, an impaired binding to cells expressing chondroitin sulfate but not heparan sulfate on the cell surface and a significantly reduced plaque size in cultured cells. The results suggested that basic amino acids present within O-glycosylation signals may down-regulate the amount of O-linked glycans attached to a protein and that substitution of such amino acid residues may have functional consequences for a viral glycoprotein involving virus attachment to permissive cells as well as viral cell-to-cell spread.  相似文献   

7.
In Saccharomyces cerevisiae, oligosaccharyl transferase (OT) consists of nine different subunits. Three of the essential gene products, Ost1p, Wbp1p, and Stt3p, are N-linked glycoproteins. To study the function of the N-glycosylation of these proteins, we prepared single or multiple N-glycosylation site mutations in each of them. We established that the four potential N-glycosylation sites in Ost1p and the two potential N-glycosylation sites in Wbp1p were occupied in the mature proteins. Interestingly, none of the N-glycosylation sites in these two proteins was conserved, and no defect in growth or OT activity was observed when the N-glycosylation sites were mutated to block N-glycosylation in either subunit. However, in the third glycosylated subunit, Stt3p, there are two adjacent potential N-glycosylation sites (N(535)NTWN(539)NT) that, in contrast to the other subunits, are highly conserved in eukaryotic organisms. Mass spectrometric analysis of a tryptic digest of Stt3p showed that the peptide containing the two adjacent N-glycosylation sites was N-glycosylated at one site. Furthermore, the glycan chain identified as Man(8)GlcNAc(2) is found linked only to Asn(539). Mutation experiments were carried out at these two sites. Four single amino acid mutations blocking either N-glycosylation site (N535Q, T537A, N539Q, and T541A) resulted in strains that were either lethal or extremely temperature sensitive. However, other mutations in the two N-glycosylation sites N(535)NTWN(539)NT (N536Q, T537S, N540Q, and T541S), did not exhibit growth defects. Based on these studies, we conclude that N-glycosylation of Stt3p at Asn(539) is essential for its function in the OT complex.  相似文献   

8.
Matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) spectrometry is a recently developed soft ionisation mass spectrometry technique which appears as a highly efficient tool for the N-glycosylation analysis of glycoproteins. The potentiality of this analytical technique is illustrated through the analysis of the N-glycosylation of the isolectin L of bean phytohemagglutinin (PHA-L). The analysis was carried out on the native PHA-L as well as on the N-glycans released from this lectin. Furthermore, the two glycopeptides containing the potential N-glycosylation sites prepared by proteolytic cleavage of PHA-L and purified by HPLC were analysed by MALDI-TOF. This study has confirmed that PHA-L is N-glycosylated by two populations of oligosaccharides, high-mannose-type N-glycans and paucimannosidic-type N-glycans, located on Asn-12 and Asn-60, respectively, and has pointed out the microheterogeneity of the glycans N-linked on both Asn residues.  相似文献   

9.
The monoclonal antibody 10E4, which recognizes an epitope supposed to contain N-unsubstituted glucosamine, is commonly used to trace heparan sulfate proteoglycans. It has not been fully clarified if the N-unsubstituted glucosamine is required for antibody recognition and if all heparan sulfates carry this epitope. Here we show that the epitope can contain N-unsubstituted glucosamine and that nitric oxide-generated deaminative cleavage at this residue in vivo can destroy the epitope. Studies using flow cytometry and confocal immunofluorescence microscopy of both normal and transformed cells indicated that the 10E4 epitope was partially inaccessible in the heparan sulfate chains attached to glypican-1. The 10E4 antibody recognized mainly heparan sulfate degradation products that colocalized with acidic endosomes. These sites were greatly depleted of 10E4-positive heparan sulfate on suramin inhibition of heparanase. Instead, there was increased colocalization between 10E4-positive heparan sulfate and glypican-1. When both S-nitrosylation of Gpc-1 and heparanase were inhibited, detectable 10E4 epitope colocalized entirely with glypican-1. In nitric oxide-depleted cells, there was both an increased signal from 10E4 and increased colocalization with glypican-1. In suramin-treated cells, the 10E4 epitope was destroyed by ascorbate-released nitric oxide with concomitant formation of anhydromannose-containing heparan sulfate oligosaccharides. Immunoisolation of radiolabeled 10E4-positive material from unperturbed cells yielded very little glypican-1 when compared with specifically immunoisolated glypican-1 and total proteoglycan and degradation products. The 10E4 immunoisolates were either other heparan sulfate proteoglycans or heparan sulfate degradation products.  相似文献   

10.
To investigate the role of the carbohydrate chain of hen egg ovalbumin (OVA), potential N-glycosylation site-deletion OVA mutants were expressed in yeast. The secretion level of the N292Q and N292/311Q mutants was greatly reduced compared with the wild-type OVA. Furthermore, secretion of the mutants without a carbohydrate chain on Asn-292 could hardly be detected in the culture medium, even if an additional N-glycosylation site was introduced to the OVA molecule. The reduction in secretion level seems to be due to incorrectly folded protein. Moreover, the secretion levels of the wild-type and N311Q mutant reduced in a similar extent as those of the mutants without a carbohydrate chain on Asn-292 in calnexin-disrupted yeast. These results indicate that the carbohydrate chain attached to Asn-292 of OVA has an important role for the secretion and folding in the cells.  相似文献   

11.
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.  相似文献   

12.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

13.
Activated protein C (APC) has potent anticoagulant and anti-inflammatory properties that limit clot formation, inhibit apoptosis, and protect vascular endothelial cell barrier integrity. In this study, the role of N-linked glycans in modulating APC endothelial cytoprotective signaling via endothelial cell protein C receptor/protease-activated receptor 1 (PAR1) was investigated. Enzymatic digestion of APC N-linked glycans (PNG-APC) decreased the APC concentration required to achieve half-maximal inhibition of thrombin-induced endothelial cell barrier permeability by 6-fold. Furthermore, PNG-APC exhibited increased protection against staurosporine-induced endothelial cell apoptosis when compared with untreated APC. To investigate the specific N-linked glycans responsible, recombinant APC variants were generated in which each N-linked glycan attachment site was eliminated. Of these, APC-N329Q was up to 5-fold more efficient in protecting endothelial barrier function when compared with wild type APC. Based on these findings, an APC variant (APC-L38D/N329Q) was generated with minimal anticoagulant activity, but 5-fold enhanced endothelial barrier protective function and 30-fold improved anti-apoptotic function when compared with wild type APC. These data highlight the previously unidentified role of APC N-linked glycosylation in modulating endothelial cell protein C receptor-dependent cytoprotective signaling via PAR1. Furthermore, our data suggest that plasma β-protein C, characterized by aberrant N-linked glycosylation at Asn-329, may be particularly important for maintenance of APC cytoprotective functions in vivo.  相似文献   

14.
The glycoprotein IgM is the major antibody produced in the primary immune response to antigens, circulating in the serum both as a pentamer and a hexamer. Pentameric IgM has a single J chain, which is absent in the hexamer. The mu (heavy) chain of IgM has five N-linked glycosylation sites. Asn-171, Asn-332, and Asn-395 are occupied by complex glycans, whereas Asn-402 and Asn-563 are occupied by oligomannose glycans. The glycosylation of human polyclonal IgM from serum has been analyzed. IgM was found to contain 23.4% oligomannose glycans GlcNAc2Man5-9, consistent with 100% occupancy of Asn-402 and 17% occupancy of the variably occupied site at Asn-563. Mannan-binding lectin (MBL) is a member of the collectin family of proteins, which bind to oligomannose and GlcNAc-terminating structures. A commercial affinity chromatography resin containing immobilized MBL has been reported to be useful for partial purification of mouse and also human IgM. Human IgM glycoforms that bind to immobilized MBL were isolated; these accounted for only 20% of total serum IgM. Compared with total serum IgM, the MBL-binding glycoforms contained 97% more GlcNAc-terminating structures and 8% more oligomannose structures. A glycosylated model of pentameric IgM was constructed, and from this model, it became evident that IgM has two distinct faces, only one of which can bind to antigen, as the J chain projects from the non-antigen-binding face. Antigen-bound IgM does not bind to MBL, as the target glycans appear to become inaccessible once IgM has bound antigen. Antigen-bound IgM pentamers therefore do not activate complement via the lectin pathway, but MBL might have a role in the clearance of aggregated IgM.  相似文献   

15.
A unique N-linked glycosylation motif (Asn(79)-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward alpha-naphthylbutyrate (C4), alpha-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased Km and decreased k(cat) for N79A, and to a considerably decreased k(cat) for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.  相似文献   

16.
We previously identified that four of five putative N-linked glycosylation sites of human endothelial lipase (EL) are utilized and suggested that the substitution of asparagine-116 (Asn-116) with alanine (Ala) (N116A) increased the hydrolytic activity of EL. The current study demonstrates that mutagenesis of either Asn-116 to threonine (Thr) or Thr-118 to Ala also disrupted the glycosylation of EL and enhanced catalytic activity toward synthetic substrates by 3-fold versus wild-type EL. Furthermore, we assessed the hydrolysis of native lipoprotein lipids by EL-N116A. EL-N116A exhibited a 5-fold increase in LDL hydrolysis and a 1.8-fold increase in HDL2 hydrolysis. Consistent with these observations, adenovirus-mediated expression of EL-N116A in mice significantly reduced the levels of both LDL and HDL cholesterol beyond the reductions observed by the expression of wild-type EL alone. Finally, we introduced Asn-116 of EL into the analogous positions within LPL and HL, resulting in N-linked glycosylation at this site. Glycosylation at this site suppressed the LPL hydrolysis of synthetic substrates, LDL, HDL2, and HDL3 but had little effect on HL activity. These data suggest that N-linked glycosylation at Asn-116 reduces the ability of EL to hydrolyze lipids in LDL and HDL2.  相似文献   

17.
gp64 is the major envelope glycoprotein in the budded form of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). gp64 is essential for AcMNPV infection, as it mediates penetration of budded virus into host cells via the endocytic pathway. In this study, we used site-directed mutagenesis to map the positions of the N-linked glycans on AcMNPV gp64, characterize their structures, and evaluate their influence on gp64 function. We found that four of the five consensus N-glycosylation sites in gp64 are used, and we mapped the positions of those sites to amino acids 198, 355, 385, and 426 in the polypeptide chain. Endoglycosidase H sensitivity assays showed that N-linked glycans located at different positions are processed to various degrees. Lectin blotting analyses showed that each N-linked glycan on gp64 contains α-linked mannose, all but one contains α-linked fucose, and none contains detectable β-linked galactose or α2,6-linked sialic acid. The amounts of infectious progeny produced by AcMNPV mutants lacking one, two, or three N-linked glycans on gp64 were about 10- to 100-fold lower than wild-type levels. This reduction did not correlate with reductions in the expression, transport, or inherent fusogenic activity of the mutant gp64s or in the gp64 content of mutant budded virus particles. However, all of the mutant viruses bound more slowly than the wild type. Therefore, elimination of one or more N-glycosylation sites in AcMNPV gp64 impairs binding of budded virus to the cell, which explains why viruses containing these mutant forms of gp64 produce less infectious progeny.  相似文献   

18.
目的 研究膀胱癌FFPE组织切片的N-连接糖链,发现膀胱癌FFPE肿瘤组织的异常N-连接糖链修饰情况。方法 发展基于FFPE组织切片原位提取N-连接糖链的实验流程。通过PNGase F酶切FFPE组织解释放N-连接糖链。对N-连接糖链自由端进行全甲基化修饰。通过MALDI-TOF/TOF-MS检测N-连接糖链的相对含量。进行数据库匹配,确定N-连接糖链的可能糖型。ROC分析用于预测显著差异N-连接糖链作为预测膀胱癌生物标志物的准确度。结果 MALDI-TOF/TOF-MS检测泛甲基化修饰N-连接糖链的数据显示,在16例膀胱癌患者的肿瘤和癌旁组织的3次重复实验中,肿瘤组织中蛋白质高甘露糖型N2H6、N2H7、N2H8、N2H9和复杂型N5H6F1糖链修饰水平显著上升,同时高甘露糖型N2H5、杂合型N3H5以及复杂型N3H4、N4H4、N5H6F1S2糖链修饰水平显著下降。ROC分析显示,双天线型N-连接糖链N3H4(AUC=0.90)和N4H4(AUC=0.91)在单独或者共同区分膀胱癌患者肿瘤组织和癌旁组织中都具有很好的可靠性,可能成为膀胱癌的潜在生物标志物。结论 膀胱癌FFPE肿瘤组织中存在蛋白质异常N-糖基化修饰,N-连接糖链N3H4和N4H4或可成为膀胱癌的潜在生物标志物。  相似文献   

19.
20.
The ligand-binding domains of AMPA receptor subunits carry two conserved N-glycosylation sites. In order to gain insight into the functional role of the corresponding N-glycans, we examined how the elimination of glycosylation at these sites (N407 and N414) affects the ligand-binding characteristics, structural stability, cell-surface expression, and channel properties of homomeric GluR-D (GluR4) receptor and its soluble ligand-binding domain (S1S2). GluR-D S1S2 protein expressed as a secreted protein in insect cells was found to be glycosylated at N407 and N414. No major differences in the ligand-binding properties were observed between the 'wild-type' S1S2 and non-glycosylated N407D/N414Q double mutant, or between S1S2 proteins expressed in the presence or absence of tunicamycin, an inhibitor of N-glycosylation. Purified glycosylated and non-glycosylated S1S2 proteins also showed similar thermostabilities as determined by CD spectroscopy. Full-length homomeric GluR-D receptor with N407D/N414Q mutation was expressed on the surface of HEK293 cells like the wild-type GluR-D. In outside-out patches, GluR-D and the N407D/N414Q mutant produced similar rapidly desensitizing current responses to glutamate and AMPA. We therefore report that the two conserved ligand-binding domain glycans do not play any major role in receptor-ligand interactions, do not impart a stabilizing effect on the ligand-binding domain, and are not critical for the formation and surface localization of homomeric GluR-D AMPA receptors in HEK293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号