首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. TACI binds two ligands, APRIL and BAFF, with high affinity and contains two cysteine-rich domains (CRDs) in its extracellular region; in contrast, BCMA and BR3, the other known high affinity receptors for APRIL and BAFF, respectively, contain only a single or partial CRD. However, another form of TACI exists wherein the N-terminal CRD is removed by alternative splicing. We find that this shorter form is capable of ligand-induced cell signaling and that the second CRD alone (TACI_d2) contains full affinity for both ligands. Furthermore, we report the solution structure and alanine-scanning mutagenesis of TACI_d2 along with co-crystal structures of APRIL.TACI_d2 and APRIL.BCMA complexes that together reveal the mechanism by which TACI engages high affinity ligand binding through a single CRD, and we highlight sources of ligand-receptor specificity within the APRIL/BAFF system.  相似文献   

2.
B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) belonging to the tumour necrosis factor (TNF) ligand family can bind three unusual TNF receptors (BCMA, TACI and BR3) with various binding affinities. BAFF and APRIL are regarded as promising therapeutic targets for autoimmune diseases because of their pivotal roles in cell survival and immune regulation. In this work, we carried out molecular dynamics calculations to explore the structural and chemical features responsible for ligand recognition by extracellular functional segments of TNF receptors. We found that the conserved pocket Dcons of BAFF/APRIL contacted the DxL motif of TNF receptors, while the Dspe1–3 sub-domains were responsible for their different affinities, especially Dspe1 and Dspe2. The residues at position II–V of DxL motif were wrapped into the Dcons pocket via salt-bridge and hydrophobic interactions. The hydrophobic residues of strand3 and helix1 in TNF receptors provided remarkable contributions for the affinities to BAFF/APRIL. Additionally, ArgVI of DxL motif played a key role in the binding selectivity via salt-bridge interaction with residue D275B in BAFF. Arg27 in BCMA contributed to the high affinity for APRIL so that BCMA showed a preference for APRIL. Our studies indicated that Arg84 and Gln95 in TACI2 played an important role in the selectivity of two cysteine-rich domain segments in TACI, leading to the higher binding affinities of TACI2 than those of TACI1. The primary cause of the disability to bind APRIL was the space conflict with the rigid conformation of the C-terminus coil of BR3. These thorough understanding of the molecular mechanism for BAFF/APRIL recognition by their receptors provides new insights for guiding inhibitor design.  相似文献   

3.
The uncertain glory of APRIL   总被引:6,自引:0,他引:6  
The tumour necrosis factor (TNF) family is intimately connected to the regulation of cellular pathways. A PRoliferation-Inducing Ligand (APRIL) is a rather new member of that family, named for its capacity to stimulate the proliferation of tumour cells in vitro. Subsequent publications also called this ligand TRDL-1 or TALL-2, respectively. APRIL and B-lymphocyte stimulator (BLyS; also termed BAFF, TALL-1, THANK, zTNF4) form a new subfamily of TNF-like ligands that are expressed in haematopoietic cells. Both ligands can bind the two members of the TNF receptor family, namely the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), as well as B-cell maturation antigen (BCMA). BLyS has recently been the subject of several reviews (for an extensive review, see Mackay et al.). The present review will thus focus on APRIL, and discuss BLyS only briefly for the sake of clarity.  相似文献   

4.
An expression cloning approach was employed to identify the receptor for B-lymphocyte stimulator (BLyS) and identified the tumor necrosis factor receptor superfamily member TACI as a BLyS-binding protein. Expression of TACI in HEK293T cells confers on the cells the ability to bind BLyS with subnanomolar affinity. Furthermore, a TACI-Fc fusion protein recognizes both the cleaved, soluble form of BLyS as well as the membrane BLyS present on the cell surface of a recombinant cell line. TACI mRNA is found predominantly in B-cells and correlates with BLyS binding in a panel of B-cell lines. We also demonstrate that TACI interacts with nanomolar affinity with the BLyS-related tumor necrosis factor homologue APRIL for which no clear in vivo role has been described. BLyS and APRIL are capable of signaling through TACI to mediate NF-kappaB responses in HEK293 cells. We conclude that TACI is a receptor for BLyS and APRIL and discuss the implications for B-cell biology.  相似文献   

5.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   

6.
Day ES  Cachero TG  Qian F  Sun Y  Wen D  Pelletier M  Hsu YM  Whitty A 《Biochemistry》2005,44(6):1919-1931
BAFF (B cell activating factor of the TNF family, also known as BlyS and TALL-1), a TNF family cytokine critical for the development and function of B cells, has been reported to bind to three receptors, BCMA (B cell maturation protein), TACI (transmembrane activator and CAML [calcium-modulator and cyclophilin ligand] interactor), and BAFFR (BAFF receptor), but with widely conflicting values for the affinity and selectivity of binding. BCMA and TACI additionally bind APRIL (a proliferation-inducing ligand), the TNF family ligand most homologous to BAFF. Using soluble, monomeric forms of the receptors, we demonstrate that BAFFR binds BAFF with K(D) approximately 16 nM, while BCMA binds with K(D) approximately 1.6 microM, indicating a approximately 100-fold selectivity for binding to BAFFR over BCMA. APRIL shows the opposite selectivity, binding to BCMA with K(D) approximately 16 nM while showing no detectable affinity for BAFFR (K(D) > 3 microM). The binding of BAFF or APRIL to these receptors is highly sensitive to assay-dependent avidity effects, likely explaining the widely ranging affinity values reported in the literature. Binding of BAFF to BCMA-Fc, a bivalent fusion protein consisting of the extracellular domain of BCMA fused to the hinge and CH1 and CH2 domains of human IgG1, in solution or coated onto an ELISA plate gave apparent binding affinities of approximately 0.63 and approximately 0.15 nM, respectively, compared to values of K(D(app)) 相似文献   

7.
Engineering an APRIL-specific B cell maturation antigen   总被引:5,自引:0,他引:5  
B cell maturation antigen (BCMA) is a tumor necrosis factor receptor family member whose physiological role remains unclear. BCMA has been implicated as a receptor for both a proliferation-inducing ligand (APRIL) and B cell-activating factor (BAFF), tumor necrosis factor ligands that bind to multiple tumor necrosis factor receptor and have been reported to play a role in autoimmune disease and cancer. The results presented herein provide a dual perspective analysis of BCMA binding to both APRIL and BAFF. First, we characterized the binding affinity of monomeric BCMA for its ligands; BAFF binding affinity (IC50 = 8 +/- 5 microm) is about 1000-fold reduced compared with the high affinity interaction of APRIL (IC50 = 11 +/- 3 nm). Second, shotgun alanine scanning of BCMA was used to map critical residues for either APRIL or BAFF binding. In addition to a previously described "DXL" motif (Gordon, N. C., Pan, B., Hymowitz, S. G., Yin, J., Kelley, R. F., Cochran, A. G., Yan, M., Dixit, V. M., Fairbrother, W. J., and Starovasnik, M. A. (2003) Biochemistry 42, 5977-5983), the alanine scanning results predicted four amino acid positions in BCMA (Tyr13, Ile22, Gln25, and Arg27) that could impart ligand specificity. Substitution of Tyr13 was tolerated for BAFF binding but not APRIL binding. Arg27 was required for high affinity binding to APRIL, whereas substitutions of this residue had minimal effect on affinity for BAFF. Further phage display experiments suggested the single mutations of I22K, Q25D, and R27Y as providing the greatest difference in APRIL versus BAFF binding affinity. Incorporation of the Q25D and R27Y substitutions into BCMA produced a dual specificity variant, since it has comparable binding affinity for both APRIL and BAFF, IC50 = 350 and 700 nm, respectively. Binding of the I22K mutant of monomeric BCMA to BAFF was undetectable (IC50 > 100 microm), but affinity for binding to APRIL was similar to wild-type BCMA. Based on these results, a BCMA-Fc fusion with the single I22K mutation was produced that binds APRIL, IC50 = 12 nm, and has no measurable affinity for BAFF. These results suggest that APRIL is the preferred ligand for BCMA and show that specificity can be further modified through amino acid substitutions.  相似文献   

8.
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) ligand superfamily and has a proliferative effect on both normal and tumor cells. The TNF family receptors (B-cell maturation antigen (BCMA), transmembrane activator and CAML-interactor (TACI), and BAFF receptor-3 (BR3)) for APRIL and the closely related ligand, B-cell activating factor of the TNF family (BAFF), bind these ligands through a highly conserved six residue DXL motif ((F/Y/W)-D-X-L-(V/T)-(R/G)). Panning peptide phage display libraries led to the identification of several novel classes of APRIL-binding peptides, which could be grouped by their common sequence motifs. Interestingly, only one of these ten classes consisted of peptides containing the DXL motif. Nevertheless, all classes of peptides prevented APRIL, but not BAFF, from binding BCMA, their shared receptor. Synthetic peptides based on selected sequences inhibited APRIL binding to BCMA with IC50 values of 0.49-27 μM. An X-ray crystallographic structure of APRIL bound to one of the phage-derived peptides showed that the peptide, lacking the DXL motif, was nevertheless bound in the DXL pocket on APRIL. Our results demonstrate that even though a focused, highly conserved motif is required for APRIL-receptor interaction, remarkably, many novel and distinct classes of peptides are also capable of binding APRIL at the ligand receptor interface.  相似文献   

9.
APRIL, a proliferation-inducing ligand, is a member of the tumor necrosis factor (TNF) family that is expressed by various types of tumors and influences their growth in vitro and in vivo. Two receptors, transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), bind APRIL, but neither is essential for the tumor-promoting effects, suggesting that a third receptor exists. Here, we report that APRIL specifically binds to heparan sulfate proteoglycans (HSPG) on the surface of tumor cells. This binding is mediated by the heparin sulfate side chains and can be inhibited by heparin. Importantly, BCMA and HSPG do not compete, but can bind APRIL simultaneously, suggesting that different regions in APRIL are critical for either interaction. In agreement, mutation of three lysines in a putative heparin sulfate-binding motif, which is not part of the TNF fold, destroys interaction with HSPG, while binding to BCMA is unaffected. Finally, whereas interaction of APRIL with HSPG does not influence APRIL-induced proliferation of T cells, it is crucial for its tumor growth-promoting activities. We therefore conclude that either HSPG serve as a receptor for APRIL or that HSPG binding allows APRIL to interact with a receptor that promotes tumor growth.  相似文献   

10.
The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity.  相似文献   

11.
The scavenger receptor C-type lectin (SRCL) is an endothelial receptor that is similar in organization to type A scavenger receptors for modified low density lipoproteins but contains a C-type carbohydrate-recognition domain (CRD). Fragments of the receptor consisting of the entire extracellular domain and the CRD have been expressed and characterized. The extracellular domain is a trimer held together by collagen-like and coiled-coil domains adjacent to the CRD. The amino acid sequence of the CRD is very similar to the CRD of the asialoglycoprotein receptor and other galactose-specific receptors, but SRCL binds selectively to asialo-orosomucoid rather than generally to asialoglycoproteins. Screening of a glycan array and further quantitative binding studies indicate that this selectivity results from high affinity binding to glycans bearing the Lewis(x) trisaccharide. Thus, SRCL shares with the dendritic cell receptor DC-SIGN the ability to bind the Lewis(x) epitope. However, it does so in a fundamentally different way, making a primary binding interaction with the galactose moiety of the glycan rather than the fucose residue. SRCL shares with the asialoglycoprotein receptor the ability to mediate endocytosis and degradation of glycoprotein ligands. These studies suggest that SRCL might be involved in selective clearance of specific desialylated glycoproteins from circulation and/or interaction of cells bearing Lewis(x)-type structures with the vascular endothelium.  相似文献   

12.
Asialoglycoprotein receptor (ASGP-R) is an endocytic C-type lectin receptor in hepatocytes that clears plasma glycoconjugates containing a terminal galactose or N-acetylgalactosamine. The carbohydrate recognition domain (CRD) of ASGP-R has three Ca(2+) binding sites (sites 1, 2 and 3), with Ca(2+) at site 2 being directly involved in ligand binding. Following endocytosis, the ligands are released from ASGP-R in endosomes to allow receptor recycling to the cell membrane. Although dissociation of the receptor-ligand complex is mediated by the acidic environment within the mature endosomes, many of these complexes also dissociate in the early time of endocytosis, where pH is approximately neutral. To investigate the mechanism of ligand release from ASGP-R in early endosomes, we examined the binding mode of Ca(2+) and ligands to ASGP-R CRD by NMR. We demonstrate that sites 1 and 2 of ASGP-R are high affinity Ca(2+) binding sites, site 3 is low affinity, and that Ca(2+) ions bind to sites 1 and 2 cooperatively. The pH and Ca(2+) concentration dependences of Ca(2+) binding states indicated that early endosome conditions favor apo-ASGP-R CRD, allowing ligand release. Our results elucidated that the cooperative binding mode of Ca(2+) makes it possible for ASGP-R to be more sensitive to Ca(2+) concentrations in early endosomes, and plays an important role in the efficient release of ligand from ASGP-R. In our proposed mechanism, ASGP-R can rapidly release Ca(2+) and its ligand even at nearly neutral pH. Sequence comparisons of endocytic C-type lectin receptors suggest that this mechanism is common in their family.  相似文献   

13.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains.  相似文献   

14.
The extracellular portion of the macrophage mannose receptor is composed of several cysteine-rich domains, including a fibronectin type II repeat and eight segments related in sequence to Ca(2+)-dependent carbohydrate-recognition domains (CRDs) of animal lectins. Expression of portions of the receptor in vitro, in fibroblasts and in bacteria, has been used to determine which of the extracellular domains are involved in binding and endocytosis of ligand. The NH2-terminal cysteine-rich domain and the fibronectin type II repeat are not necessary for endocytosis of mannose-terminated glycoproteins. CRDs 1-3 have at most very weak affinity for carbohydrate, so the carbohydrate binding activity of the receptor resides in CRDs 4-8. CRD 4 shows the highest affinity binding and has multispecificity for a variety of monosaccharides. However, CRD 4 alone cannot account for the binding of the receptor to glycoproteins. At least 3 CRDs (4, 5, and 7) are required for high affinity binding and endocytosis of multivalent glycoconjugates. In this respect, the mannose receptor is like other carbohydrate-binding proteins, in which several CRDs, each with weak affinity for single sugars, are clustered to achieve high affinity binding to oligosaccharides. In the mannose receptor, these multiple weak interactions are achieved through several active CRDs in a single polypeptide chain rather than by oligomerization of polypeptides each containing a single CRD.  相似文献   

15.
16.
Tumor necrosis factor (TNF) ligand family members are synthesized as transmembrane proteins, and cleavage of the membrane-anchored proteins from the cell surface is frequently observed. The TNF-related ligands APRIL and BLyS and their cognate receptors BCMA/TACI form a two ligand/two receptor system that has been shown to participate in B- and T-cell stimulation. In contrast to BLyS, which is known to be cleaved from the cell surface, we found that APRIL is processed intracellularly by furin convertase. Blockage of protein transport from the endoplasmic reticulum to the Golgi apparatus by Brefeldin A treatment abrogated APRIL processing, whereas monensin, an inhibitor of post-Golgi transport, did not interfere with cleavage of APRIL, but blocked secretion of processed APRIL. Thus, APRIL shows a unique maturation pathway among the TNF ligand family members, as it not detectable as a membrane-anchored protein at the cell surface, but is processed in the Golgi apparatus prior to its secretion.  相似文献   

17.
The dendritic cell-specific ICAM-3 non-integrin (DC-SIGN) and its close relative DC-SIGNR recognize various glycoproteins, both pathogenic and cellular, through the receptor lectin domain-mediated carbohydrate recognition. While the carbohydrate-recognition domains (CRD) exist as monomers and bind individual carbohydrates with low affinity and are permissive in nature, the full-length receptors form tetramers through their repeat domain and recognize specific ligands with high affinity. To understand the tetramer-based ligand binding avidity, we determined the crystal structure of DC-SIGNR with its last repeat region. Compared to the carbohydrate-bound CRD structure, the structure revealed conformational changes in the calcium and carbohydrate coordination loops of CRD, an additional disulfide bond between the N and the C termini of the CRD, and a helical conformation for the last repeat. On the basis of the current crystal structure and other published structures with sequence homology to the repeat domain, we generated a tetramer model for DC-SIGN/R using homology modeling and propose a ligand-recognition index to identify potential receptor ligands.  相似文献   

18.
The crystal structure of a proliferation-inducing ligand, APRIL   总被引:9,自引:0,他引:9  
A proliferation-inducing ligand (APRIL) is a TNF-like cytokine that stimulates tumor cell growth. Within the TNF ligand superfamily, APRIL is most similar to B-cell activation factor (BAFF) with which it shares 30% sequence identity. APRIL binds the receptors B-cell maturation antigen (BCMA) and TACI with high affinity; both of these receptors have also been shown to bind BAFF, although BCMA has significantly higher affinity for APRIL than BAFF. Determination of the crystal structure of APRIL from three crystallization conditions at resolutions of 1.8-2.4A over a pH range from 5.0 to 8.5 reveals a compact trimeric ligand with a backbone fold very similar to that of BAFF (1.1A RMSD over 122 structurally equivalent Calpha atoms), with the exception of differences in the AA' and DE loop regions. Whereas BAFF has been shown to form 20-trimer assemblies under certain conditions, the molecular determinants required for BAFF-like assemblies are absent in the APRIL structure. No crystal packing suggestive of the formation of higher-order assemblies is seen in any of the crystal forms nor does the structure vary significantly between pH 5.0 and 8.5. Modeling of the APRIL-BCMA complex shows the resulting interface is in agreement with mutagenesis data.  相似文献   

19.
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.  相似文献   

20.
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell–maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell–effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号