首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dai L  Liu Y  He J  Flack CG  Talsma CE  Crowley JG  Muraszko KM  Fan X  Lubman DM 《Proteomics》2011,11(20):4021-4028
We have recently demonstrated that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post-translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N-linked glycoproteins from cell lysates using multi-lectin chromatography and label-free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC- and GSI-treated groups, respectively, filtered by a combination of decoy database searching and Trans-Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi-lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.  相似文献   

2.

Background  

Several γ-secretase inhibitors (GSI) are in clinical trials for the treatment of Alzheimer's disease (AD). This enzyme mediates the proteolytic cleavage of amyloid precursor protein (APP) to generate amyloid β protein, Aβ, the pathogenic protein in AD. The γ-secretase also cleaves Notch to generate Notch Intracellular domain (NICD), the signaling molecule that is implicated in tumorigenesis.  相似文献   

3.
Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD. In addition to processing APP, γ-secretase also catalyzes proteolytic cleavage of other transmembrane substrates, with the best characterized one being the cell surface receptor Notch. GSIs reduce Aβ production in animals and humans but also cause significant side effects because of the inhibition of Notch processing. The development of GSIs that reduce Aβ production and have less Notch-mediated side effect liability is therefore an important goal. γ-Secretase is a large membrane protein complex with four components, two of which have multiple isoforms: presenilin (PS1 or PS2), aph-1 (aph-1a or aph-1b), nicastrin, and pen-2. Here we describe the reconstitution of four γ-secretase complexes in Sf9 cells containing PS1--aph-1a, PS1--aph-1b, PS2--aph-1a, and PS2--aph-1b complexes. While PS1--aph-1a, PS1--aph-1b, and PS2--aph-1a complexes displayed robust γ-secretase activity, the reconstituted PS2--aph-1b complex was devoid of detectable γ-secretase activity. γ-Secretase complexes containing PS1 produced a higher proportion of the toxic species Aβ42 than γ-secretase complexes containing PS2. Using the reconstitution system, we identified MRK-560 and SCH 1500022 as highly selective inhibitors of PS1 γ-secretase activity. These findings may provide important insights into developing a new generation of γ-secretase inhibitors with improved side effect profiles.  相似文献   

4.
How to effectively delivering therapeutic agents, including γ-secretase inhibitors (GSIs), into live cells, remains a significant challenge. This study assessed the effect of Notch signaling inhibition by examining levels of the Notch1 intracellular domain (N1ICD) in cultured oral cancer cells analyzed with random stitched images (2D) and 3D visualizations using confocal microscopy and quantitative gene analysis. Substantially, we have developed a novel method to assist the delivery of γ-secretase inhibitor, DAPT, into live cells in the presence of an effective minimum concentration of Triton-X100 (0.001%) without damaging cell activity and membrane integrity assessed with cell proliferation assays. The images obtained in this study showed that DAPT alone could not block the γ-secretase inhibitor despite inhibiting cell growth. Further analysis of quantitative gene expressions of Notch signaling canonical pathway to verify the effectiveness of the novel method for delivering inhibitor into live cells, displayed deregulation of Notch1, Delta-like ligand 1 (DLL1) and hairy and enhancer of split 1 (Hes1). Our data suggest that Notch1/Hes1 signaling pathway is deactivated using DAPT with a low dose of Triton-X100 in this cancer cells. And the finding also suggests that Notch1 could be engaged by DLL1 to promote differentiation in oral cancer cells. Using this approach, we demonstrate that Triton-X100 is a promising and effective permeabilization agent to deliver γ-secretase inhibitor DAPT into live oral epithelial cells. This strategy has the potential to implicate in the treatment of cancer diseases.  相似文献   

5.
Mesenchymal stem cells (MSC) have attracted recent attention for their cell therapy potential, based in particular on their immunosuppressive properties, which have served as the basis for the treatment of autoimmune diseases. Interestingly, MSC have been used in cell therapy strategies to deliver therapeutical genes. Cell therapy approaches taking advantages of MSC have been proposed, as MSC display a potential tropsim for tumors. However, all these strategies raise a series of questions about the safety of MSC, as MSC could enhance tumor growth and metastasis. This review summarizes recent findngs about MSC in carcinogenesis.  相似文献   

6.
7.
Systemic chemotherapy is the only current method of treatment that provides some chance for long-term survival in patients with advanced or metastatic cancer. γ-Tocotrienol is a natural form of vitamin E found in high concentrations in palm oil and displays potent anticancer effects, but limited absorption and transport of by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and are an example of a promising cancer chemotherapeutic agent whose clinical usefulness has been limited due to high-dose toxicity. Similarly, erlotinib and gefitinib are anticancer agents that inhibit the activation of individual HER/ErbB receptor subtypes, but have shown limited clinical success because of heterodimerization between different EGF receptor family members that can rescue cancer cells from agents directed against a single receptor subtype. Recent studies have investigated the anticancer effectiveness of low-dose treatment of various statins or EGF receptor inhibitors alone and in combination with γ-tocotrienol on highly malignant +SA mouse mammary epithelial cells in vitro. Combined treatment with subeffective doses of γ-tocotrienol with these other chemotherapeutic agents resulted in a synergistic inhibition of +SA cell growth and viability. These findings strongly suggest that combined treatment of γ-tocotrienol with other anticancer agents may not only provide an enhanced therapeutic response but also provide a means to avoid the toxicity, low bioavailability, or limited therapeutic action associated with high-dose monotherapy.  相似文献   

8.
Herein we describe the structure-activity relationship (SAR) of amino-caprolactam analogs derived from amino-caprolactam benzene sulfonamide 1, highlighting affects on the potency of γ-secretase inhibition, selectivity for the inhibition of APP versus Notch processing by γ-secretase and selected pharmakokinetic properties. Amino-caprolactams that are efficacious in reducing the cortical Aβx-40 levels in FVB mice via a single 100 mpk IP dose are highlighted.  相似文献   

9.
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.  相似文献   

10.
11.
The inhibition of FLT-3 activity is an interesting target for the treatment of acute myeloid leukemia (AML). The serendipitous identification of FLT-3 inhibitors from a CK1/γ-secretase programme provided compounds with dual inhibitory activity. We analyzed the structure–activity relationship of these inhibitors and derivatized them to arrive at compounds with reduced impact on γ-secretase activity and enhanced FLT-3 inhibition.  相似文献   

12.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

13.
The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC(50) of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex.  相似文献   

14.
Placenta-derived stem cells (PDSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal and differentiation and their immunomodulatory properties. Although many studies have characterized various PDSCs biologically, the properties of the self-renewal and differentiation potential among PDSCs have not yet been directly compared. We consider the characterization of chorionic-plate-derived mesenchymal stem cells (CP-MSCs) and Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) among various PDSCs and the assessment of their differentiation potential to be important for future studies into the applicability and effectiveness of PDSCs in cell therapy. In the present study, the capacities for self-renewal and multipotent differentiation of CP-MSCs and WJ-MSC isolated from normal term placentas were compared. CP-MSCs and WJ-MSCs expressed mRNAs for the pluripotent stem cell markers Oct-4, Nanog, and Sox-2. Additionally, HLA-G for immunomodulatory effects was found to be expressed at both the mRNA and protein levels in both cell types. The CP-MSCs and WJ-MSCs also had the capacities to differentiate into cells of mesodermal (adipogenic and osteogenic) and endodermal (hepatogenic) lineages. Expression of adipogenesis-related genes was higher in CP-MSCs than in WJ-MSCs, whereas WJ-MSCs accumulated more mineralized matrix than CP-MSCs. The WJ-MSCs expressed more of CYP3A4 mRNA, a marker for mature hepatocytes, than CP-MSCs. Thus, we propose that CP-MSCs and WJ-MSCs are useful sources of cells for appropriate clinical applications in the treatment of various degenerative diseases.  相似文献   

15.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

16.
Integrins are adhesion receptors for components of the extracellular matrix (ECMs) that regulate multiple cellular functions, such as migration, invasion, proliferation, and survival by mediating bidirectional signal transmission. Even though many proteins have been reported to associate with integrins both on and in cells, systemic analyses of the adhesome have not been carried out. In previous studies, we identified proteins associating with a membrane-type protease, MT1-MMP, using nano-flow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) of associated proteins prepared by optimized conditions for cell lysis and purification. Since integrins were identified as MT1-MMP-associated proteins, we next applied this method to analyze integrin-associated proteins. In this study, we expressed integrin α2 fused at the C terminus to a FLAG peptide in HT1080 cells. Cells stably expressing the chimeric protein were lysed with 1% Brij-98 and affinity purified using anti-FLAG antibody. Integrin β1 co-purified with integrin α2 confirming the specificity of the purification procedure. Analysis of the purified mixture by nano-LC/MS/MS identified 70 proteins. Nineteen of these were membrane proteins, including adhesion proteins, receptors, transporters, proteinases, and ion-channel receptors, and the balance were cytoplasmic. Interestingly, eight of the proteins had previously been shown to associate with MT1-MMP. We believe the present study provides a platform to facilitate the study of the mechanisms of cell adhesion, migration, and invasion.  相似文献   

17.
18.
Supramolecular self-assembly of amyloidogenic peptides is closely associated with numerous pathological conditions. For instance, Alzheimer´s disease (AD) is characterized by abundant amyloid plaques originating from the proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Compounds named γ-secretase modulators (GSMs) can shift the substrate cleavage specificity of γ-secretase toward the production of non-amyloidogenic, shorter Aβ fragments. Herein, we describe the synthesis of highly potent acidic GSMs, equipped with a photoreactive diazirine moiety for photoaffinity labeling. The probes labeled the N-terminal fragment of presenilin (the catalytic subunit of γ-secretase), supporting a mode of action involving binding to γ-secretase. This fundamental step toward the elucidation of the molecular mechanism governing the GSM-induced shift in γ-secretase proteolytic specificity should pave the way for the development of improved drugs against AD.  相似文献   

19.
The synthesis and structure-activity relationship (SAR) of a novel series of di-substituted imidazoles, derived from modification of DAPT, are described. Subsequent optimization led to identification of a highly potent series of inhibitors that contain a β-amine in the imidazole side-chain resulting in a robust in vivo reduction of plasma and brain Aβ in guinea pigs. The therapeutic index between Aβ reductions and changes in B-cell populations were studied for compound 10h.  相似文献   

20.
Single agent treatment of the γ-secretase inhibitor (GSI-I) or proteasome inhibitor in anaplastic lymphoma kinase positive anaplastic large cell lymphoma (ALK+ ALCL) shows limited response and considerable toxicity. Here, we examined the effects of the combination of low dose GSI-I and the proteasome inhibitor bortezomib (BTZ) in ALK+ ALCL cells in vivo and in vitro. We found that ALK+ ALCL cells treated with the BTZ and GSI-I combination treatment showed elevated apoptosis, consistent with increased caspase activation, compared with BTZ or GSI-I alone. The combination treatment also inhibited AKT and extracellular signal-related kinase pathways, as well as stress-related cascades, including the c-jun N-terminal kinase and stress-activated kinases. Moreover, combined treatment in a murine xenograft model resulted in increased apoptosis in tumor tissues and reduced tumor growth. Our results reveal the synergistic anti-tumor effects of low dose inhibitors against γ-secretase and the proteasome and suggest the potential application of the tolerable BTZ/GSI-I combined agents in treating ALK+ ALCL in future clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号