共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the CN –-induced apoptosis of guard cells in epidermal peels isolated from pea ( Pisum sativum L.) leaves. This process was considerably stimulated by illumination and suppressed by the herbicides DCMU (an inhibitor of the electron transfer between quinones Q A and Q B in PS II) and methyl viologen (an electron acceptor from PS I). These data favor the conclusion drawn by us earlier that chloroplasts are involved in the apoptosis of guard cells. Pea mutants with impaired PS I (Chl-5), PS II (Chl-I), and PS II + PS I (Xa-17) were tested. Their lesions were confirmed by the ESR spectra of Signal I (oxidized PS I reaction centers) and Signal II (oxidized tyrosine residue Y D in PS II). Destruction of nuclei (a symptom of apoptosis) and their consecutive disappearance in guard cells were brought about by CN – in all the three mutants and in the normal pea plants. These results indicate that the light-induced enhancement of apoptosis of guard cells and its removal by DCMU are associated with PS II function. The effect of methyl viologen preventing CN –-induced apoptosis in wild-type plants was removed or considerably decreased upon the impairment of the PS II and/or PS I activity. 相似文献
4.
Photosynthesis Research - The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting... 相似文献
5.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl 2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I, kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α and kT(II→I) in the absence (?) and presence (+) of Mg 2+:α/ ?α += 1.2and k/ ?T(II→I)k +T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg 2+, a+ = 0.27 and the yield of energy transfer,φ +T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg 2+,α ? = 0.32 andφ T(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I, kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II→I). In that caseα/ ?α += 1.3, k/ ?T(II→I)k +T(II→I)= 1.3 and k/ ?t(II→I)k +(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process. 相似文献
6.
Using structural information from recently published crystal structures of photosystems I and II, the processes of excitation energy transfer and electron transfer in oxygenic photosynthesis have been studied in great detail by experimental and theoretical methods. Although both systems share numerous common structural and functional features, efficiency and regulation are differently weighted in the individual processes that are involved in the transformation of light energy into chemical energy in the two complexes. 相似文献
8.
Uncoupled noncyclic electron flow in stacked (granal) chloroplasts with a lateral heterogeneity in the distribution of the two photosystems has been compared with that in unstacked (agranal) chloroplasts with a near-uniform distribution. Chloroplasts were maintained in either structural state in the same assay medium so as to equalize effects of ionic composition which may influence reaction rates. The assay medium, an ion-deficient solution, was capable of supporting high rates of electron flow from water to methyl viologen. At high irradiance, unstacked chloroplasts exhibited an uncoupled rate which was 30% (in chloroplasts isolated from lettuce grown in low light) or 55% (in chloroplasts isolated from lettuce grown in high light) higher than that of stacked chloroplasts; the percentage remained relatively constant in the temperature range 7 to 22 degrees C for both high-light and low-light chloroplasts. At low irradiance, stacked low-light chloroplasts, despite the spatial separation of the two photosystems, gave higher rates of electron flow than did unstacked low-light chloroplasts. The addition of MgCl2 to stacked chloroplasts increased the uncoupled rate of noncyclic electron flow, but only at relatively high irradiances. The differences observed for stacked and unstacked chloroplasts, and for high-light and low-light chloroplasts are discussed. The approach taken in this work should be useful in other comparisons of stacked and unstacked chloroplasts. 相似文献
9.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process. 相似文献
11.
Using dark adapted isolated spinach chloroplasts and sequences of brief saturating flashes the correlation of the uptake and release of protons with electron transport from Photosystem II to Photosystem I were studied. The following observations and conclusions are reported: (1) Flash-induced proton uptake shows a weak, damped binary oscillation, with maxima occurring after the 2nd, 4th, etc. flashes. The damping factor is comparable to that observed in the O2 flash yield oscillation and therefore explained by misses in Photosystem II. (2) On the average and after a steady state is reached, each flash (i.e. each reduction of Q) induces the uptake of 2H+ from outside the chloroplasts. (3) Flash induced proton release inside the chloroplast membrane shows a strong damped binary oscillation with maximum release occurring also after the 2nd, 4th, etc. flashes. (4) This phenomenon is correlated with the earlier reported binary oscillations of electron transport [2] and shows that both electrons and protons are transported in pairs between the photosystems. (5) In two sequential flashes 4H+ from the outside of the thylakoid and 2e- from water are accumulated at a binding site B. Subsequently, the two electrons are transferred to non-protonated acceptors in Photosystem I (probably plastocyanin and cytochrome f) and the 4H+ are released inside the thylakoid. (6) It is concluded that a primary proton transporting site and/or energy conserving step located between the photosystems is being observed. 相似文献
12.
Recent studies of responses of cyanobacterial cells to salt stress have revealed that the NaCl-induced decline in the photosynthetic activities of photosystems II and I involves rapid and slow changes. The rapid decreases in the activities of both photosystems, which occur within a few minutes, are reversible and are associated with osmotic effects, which induce the efflux of water from the cytosol through water channels and rapidly increase intracellular concentrations of salts. Slower decreases in activity, which occur within hours, are irreversible and are associated with ionic effects that are due to the influx of Na(+) and Cl(-) ions through K(+)(Na(+)) channels and, probably, Cl(-) channels, with resultant dissociation of extrinsic proteins from photosystems. In combination with light stress, salt stress significantly stimulates photoinhibition by inhibiting repair of photodamaged photosystem II. Tolerance of photosystems to salt stress can be enhanced by genetically engineered increases in the unsaturation of fatty acids in membrane lipids and by intracellular synthesis of compatible solutes, such as glucosylglycerol and glycinebetaine. In this review, we summarize recent progress in research on the effects of salt stress on photosynthesis in cyanobacteria. 相似文献
13.
Spinach chloroplasts have been prepared nonaqueously using non-polar solvents (n-hexane, CCl4, n-hepatane) and the beta-carotene content extracted in a controlled manner. This procedure is reproducible and does not result in large structural or spectral changes of the chloroplasts. The organisation of the chlorophyll-proteins is unaltered, as fragmentation with digitonin results in the appearance of the same fractions as found previously for aqueously-prepared chloroplasts, including the pink zone containing cytochromes f and b6 in the ratio 1 : 2. The chloroplasts possess both Photosystem I activity (P-700 photo-bleaching, and NADP+ photoreduction) and Photosystem II activity (parabenzoquinone reduction with Mn2+ as electron donor, and chlorophyll fluorescence induction). Use of moderate intensity red illumination has allowed a study of the role of beta-carotene in photochemistry separate from its roles in energy transfer and photoprotection. Removal of the fraction of beta-carotene closely associated with the Photosystem I reaction centre caused the rate of NADP+ photoreduction to fall to a low, but significantly non-zero level. Thus, in the complete absence of beta-carotene, photochemistry can still be observed, however the specific association of beta-carotene with the reaction centre is required for maximal rates. We propose that beta-carotene bound at the reaction centre decreases the rate of transfer of excitation energy away from the reaction centre, and increases the rate of photochemistry. It is possible that this occurs via formation of an exciplex between ground state beta-carotene and chlorophyll in the first excited state. 相似文献
14.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves ( Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m –2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P
700
+
(oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B 1 and B 2
fraction of closed PSI and PSII reaction centers, respectively
- ES
photoacoustically measured energy storage
- F o, F m and F s
initial, maximal and steady-state levels of chlorophyll fluorescence
- P 700
reaction center of PSI
- PS (I, II)
photosystem (I, II)
- V = (F s – F o)/(F m – F o)
relative variable chlorophyll fluorescence
We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help. 相似文献
15.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H 2O 2. Oxygenevolution in the presence of H 2O 2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H 2O 2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H 2O 2.These data indicate that H 2O 2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II.
1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; ) 相似文献
17.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10 ?11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been recorded within the 650 to 800 nm spectral region.We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps ( τI) and Photosystem II fluoresces with a lifetime of 300 ps ( τII). Fluorescence with a lifetime of 4500 ps ( τIII) may be interpreted as originating from chlorophyll monomeric forms which are not involved in photosynthesis.It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corresponds to the time of energy migration to them from carotenoids. 相似文献
18.
1. It was found that the P/2 e ratio was independent of the degree of electron transport stimulation in the presence of ADP and P i and exceeded 1.0 in the preparations with slight (30 %) as well as with high (80 %) stimulation. 2. Chloroplast preparations having a low content of endogenous Pi showed higher stimulation than those with higher contents. 3. Illumination of the chloroplasts in the presence of ADP and electron acceptor led to a decrease of endogenous Pi content that resulted in an increase of electron transport stimulation in the presence of exogenous Pi. 4. Electron transport in the absence of exogenous Pi was inhibited by both exogenous ADP and ATP. 5. It appears that the electron transport in the absence of exogenous Pi is coupled to phosphorylation, which occurs because isolated chloroplasts contain endogenous Pi. Stimulation of the electron transport by the addition of ADP and Pi seems to be caused by acceleration of the existing electron transport pathway, and not from the initiation of a new one. 相似文献
19.
The degree of chlorophyll fluorescence polarization ( p) at 740 nm was measured at room temperature for pea chloroplasts subjected to various conditions. (1) In agreement with previous published observations, p decreased when the Photosystem (PS) II traps were closed by illumination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. (2) Under these conditions, the magnitude of p was also sensitive to the presence of salts. Under conditions when ‘spillover’ of the excitation energy from PS II to PS I was low, p was also low, being consistent with increased migration of energy between the PS II light-harvesting chlorophylls. In contrast, when spillover was at a maximum p increased. (3) The change in p in the presence of salts was dependent on the concentration and valency of the cations in such a way as to suggest the changes were mediated through electrostatic forces. The dependency of p on ionic composition of the experimental medium was closely related to the associated changes in fluorescence yield. (4) Membrane stacking, caused by lowering pH of the chloroplast suspension, did not induce a significant change in p, suggesting that this pH-induced process is different from the membrane stacking brought about by manipulating the salt levels. (5) Incubation of thylakoids with ATP induces light-dependent phosphorylation of the light-harvesting chlorophyll-protein complexes, and regulates excitation energy transfer between PS I and PS II (Bennett, J., Steinback, K.R. and Arntzen, C.J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5253–5257). Under conditions which bring about this phosphorylation it was found that p increased to a value indicative of spillover. 相似文献
20.
Biologia Plantarum - Abscisic acid (ABA) had no significant immediate effect on the activities of Photosystems PS 1 (DPIP/Ascorbate → MV) and PS 2 (H2O → K3[Fe(CN)6]), when added during... 相似文献
|