首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salamanca S  Li L  Vendrell J  Aviles FX  Chang JY 《Biochemistry》2003,42(22):6754-6761
The leech carboxypeptidase inhibitor (LCI) is a 66-amino acid protein, containing four disulfides that stabilize its structure. This polypeptide represents an excellent model for the study and understanding of the diversity of folding pathways in small, cysteine-rich proteins. The pathway of oxidative folding of LCI has been elucidated in this work, using structural and kinetic analysis of the folding intermediates trapped by acid quenching. Reduced and denatured LCI refolds through a rapid, sequential flow of one- and two-disulfide intermediates and reaches a rate-limiting step in which a mixture of three major three-disulfide species and a heterogeneous population of non-native four-disulfide (scrambled) isomers coexist. The three three-disulfide intermediates have been identified as major kinetic traps along the folding pathway of LCI, and their disulfide structures have been elucidated in this work. Two of them contain only native disulfide pairings, and one contains one native and two non-native disulfide bonds. The coexistence of three-disulfide kinetic traps adopting native disulfide bonds together with a significant proportion of fully oxidized scrambled isomers shows that the folding pathway of LCI features properties exhibited by both the bovine pancreatic trypsin inhibitor and hirudin, two diverse models with extreme folding characteristics. The results further demonstrate the large diversity of disulfide folding pathways.  相似文献   

2.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

3.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   

4.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

5.
Chang J  Ballatore A 《FEBS letters》2000,473(2):183-187
In the presence of denaturant and thiol initiator, the native bovine pancreatic trypsin inhibitor (BPTI) denatures by shuffling its native disulfide bonds and converts to a mixture of scrambled isomers. The extent of denaturation is evaluated by the relative yields of the scrambled and native species of BPTI. BPTI is an exceedingly stable molecule and can be effectively denatured only by guanidine thiocyanate (GdmSCN) at concentrations higher than 3-4 M. The denatured BPTI consists of at least eight fractions of scrambled isomers. Their composition varies under increasing concentrations of GdmSCN. In the presence of 6 M GdmSCN, the most predominant fraction of scrambled BPTI accounts for 56% of the total structure of denatured BPTI. Structural analysis reveals that this predominant fraction contains the bead-form isomer of scrambled BPTI, bridged by three pairs of neighboring cysteines, Cys5-Cys14, Cys30-Cys38 and Cys51-Cys55. The extreme conformational stability of BPTI has important implications in its distinctive folding pathway.  相似文献   

6.
Chang JY 《Biochemistry》2004,43(15):4522-4529
The pathways of oxidative folding of disulfide proteins exhibit a high degree of diversity, which is illustrated by the varied extent of (a) the heterogeneity of folding intermediates, (b) the predominance of intermediates containing native disulfide bonds, and (c) the level of accumulation of fully oxidized scrambled isomers as intermediates. BPTI and hirudin exemplify two extreme cases of such divergent folding pathways. We previously proposed that the underlying cause of this diversity is associated with the degree of stability of protein subdomains. Here we present compelling evidence that substantiates this hypothesis by studying the folding pathway of alphaLA-IIA. alphaLA-IIA is a partially folded intermediate of alpha-lactalbumin (alphaLA). It comprises a structured beta-sheet (calcium-binding) domain linked by two native disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) and a disordered alpha-helical domain with four free cysteines (Cys(6), Cys(28), Cys(111), and Cys(120)). Purified alphaLA-IIA was allowed to refold without and with stabilization of its structured beta-sheet domain by calcium. In the absence of calcium, the folding pathway of alphaLA-IIA resembles that of hirudin, displaying a highly heterogeneous population of folding intermediates, including fully oxidized scrambled species. Upon stabilization of its beta-sheet domain by bound calcium, oxidative folding of alphaLA-IIA undergoes a pathway conspicuously similar to that of BPTI, exhibiting limited species of folding intermediates containing mostly native disulfide bonds.  相似文献   

7.
The folding pathway of human epidermal growth factor (EGF) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. Oxidative folding of the fully reduced EGF proceeds through 1-disulfide intermediates and accumulates rapidly as a single stable 2-disulfide intermediate (designated as EGF-II), which represents up to more than 85% of the total protein along the folding pathway. Among the five 1-disulfide intermediates that have been structurally characterized, only one is native, and nearly all of them are bridges by neighboring cysteines. Extensive accumulation of EGF-II indicates that it accounts for the major kinetic trap of EGF folding. EGF-II contains two of the three native disulfide bonds of EGF, Cys(14)-Cys(31) and Cys(33)-Cys(42). However, formation of the third native disulfide (Cys(6)-Cys(20)) for EGF-II is slow and does not occur directly. Kinetic analysis reveals that an important route for EGF-II to reach the native structure is via rearrangement pathway through 3-disulfide scrambled isomers. The pathway of EGF-II to attain the native structure differs from that of three major 2-disulfide intermediates of bovine pancreatic trypsin inhibitor (BPTI). The dissimilarities of folding mechanism(s) between EGF, BPTI, and hirudin are discussed in this paper.  相似文献   

8.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   

9.
Pathways of oxidative folding of disulfide proteins display a high degree of diversity and vary among two extreme models. The BPTI model is defined by limited species of folding intermediates adopting mainly native disulfide bonds. The hirudin model is characterized by highly heterogeneous folding intermediates containing mostly non-native disulfide bonds. αLA-IIIA is a 3-disulfide variant of α-lactalbumin (αLA) with a 3-D conformation essentially identical to that of intact αLA. αLA-IIIA contains 3 native disulfide bonds of αLA, two of them are located at the calcium binding β-subdomain (Cys61–Cys77 and Cys73–Cys91) and the third bridge is located within the α-helical domain of the molecule (Cys28–Cys111). We investigate here the pathway of oxidative folding of fully reduced αLA-IIIA with and without stabilization of its β-subdomain by calcium binding. In the absence of calcium, the folding pathway of αLA-IIIA was shown to resemble that of hirudin model. Upon stabilization of β-sheet domain by calcium binding, the folding pathway of αLA-IIIA exhibits a striking similarity to that of BPTI model. Three predominant folding intermediates of αLA-IIIA containing exclusively native disulfide bonds were isolated and structurally characterized. Our results further demonstrate that stabilization of subdomains in a protein may dictate its folding pathway and represent a major cause for the existing diversity in the folding pathways of the disulfide-containing proteins.  相似文献   

10.
The disulfide folding pathway of bovine pancreatic trypsin inhibitor (BPTI) is characterized by the predominance of folding intermediates with native-like structures. Our laboratory has recently analyzed the folding pathway(s) of four 3-disulfide-containing proteins, including hirudin, potato carboxypeptidase inhibitor, epidermal growth factor, and tick anticoagulant peptide. Their folding mechanism(s) differ from that of BPTI by 1) a higher degree of heterogeneity of 1- and 2-disulfide intermediates and 2) the presence of 3-disulfide scrambled isomers as folding intermediates. To search for the underlying causes of these diversities, we conducted kinetic analyses of the reductive unfolding of these five proteins. The experiment of reductive unfolding was designed to evaluate the relative stability and interdependence of disulfide bonds in the native protein. It is demonstrated here that among these five proteins, there exists a striking correlation between the mechanism(s) of reductive unfolding and that of oxidative folding. Those proteins with their native disulfide bonds reduced in a collective and simultaneous manner exhibit both a high degree of heterogeneity of folding intermediates and the accumulation of scrambled isomers along the folding pathway. A sequential reduction of the native disulfide bonds is associated with the presence of predominant intermediates with native- like structures.  相似文献   

11.
Two very different mechanisms of folding have been proposed from experimental studies of disulfide formation in reduced ribonuclease A. (1) A pathway in which the rate-limiting step separates fully folded protein from all other disulfide intermediates and occurs solely in three-disulfide intermediates. (2) A multiple pathway mechanism with different rate-limiting steps for each pathway. The various rate-limiting steps involve disulfide breakage, formation, and rearrangement in intermediates with one, two, three, and four protein disulfides. To distinguish between these two mechanisms, we have carried out further studies of both unfolding and refolding. Refolding of reduced ribonuclease A requires three-disulfide intermediates to accumulate; negligible refolding occurs when only the nearly random one- and two-disulfide intermediate species are populated. Therefore, no rate-limiting steps of the type postulated in mechanism (2) occur in intermediates with one and two protein disulfides. Unfolding and disulfide reduction is an all-or-none process; no disulfide intermediates accumulate to detectable levels or precede the rate-limiting step. Mechanism (2) requires that such intermediates precede the rate-limiting step and accumulate to substantial levels. The different proposals were shown not to result from the use of different solution conditions or disulfide reagents; the two sets of data are not inconsistent. Instead, the inappropriate mechanism (2) resulted from an incorrect kinetic analysis and misinterpretation of the kinetics of disulfide formation and breakage.  相似文献   

12.
Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps.  相似文献   

13.
Oxidative folding of insulin-like growth factor I (IGF-I) and single-chain insulin analogs proceeds via one- and two-disulfide intermediates. A predominant one-disulfide intermediate in each case contains the canonical A20-B19 disulfide bridge (cystines 18-61 in IGF-I and 19-85 in human proinsulin). Here, we describe a disulfide-linked peptide model of this on-pathway intermediate. One peptide fragment (19 amino acids) spans IGF-I residues 7-25 (canonical positions B8-B26 in the insulin superfamily); the other (18 amino acids) spans IGF-I residues 53-70 (positions A12-A21 and D1-D8). Containing only half of the IGF-I sequence, the disulfide-linked polypeptide (designated IGF-p) is not well ordered. Nascent helical elements corresponding to native alpha-helices are nonetheless observed at 4 degrees C. Furthermore, (13)C-edited nuclear Overhauser effects establish transient formation of a native-like partial core; no non-native nuclear Overhauser effects are observed. Together, these observations suggest that early events in the folding of insulin-related polypeptides are nucleated by a native-like molten subdomain containing Cys(A20) and Cys(B19). We propose that nascent interactions within this subdomain orient the A20 and B19 thiolates for disulfide bond formation and stabilize the one-disulfide intermediate once formed. Substitutions in the corresponding region of insulin are associated with inefficient chain combination and impaired biosynthetic expression. The intrinsic conformational propensities of a flexible disulfide-linked peptide thus define a folding nucleus, foreshadowing the structure of the native state.  相似文献   

14.
M J Volles  X Xu  H A Scheraga 《Biochemistry》1999,38(22):7284-7293
The distribution of one-disulfide bonds in the two-disulfide intermediates in the oxidative refolding of bovine pancreatic ribonuclease A has been characterized. These two-disulfide intermediates were formed from the fully reduced denatured protein by oxidation with dithiothreitol, then blocked with AEMTS, purified by cation-exchange chromatography, enzymatically digested, and analyzed by reversed-phase high-performance liquid chromatography and mass spectrometry. The relative concentration of each of the 28 possible one-disulfide bonds in the two-disulfide ensemble was determined. Comparison with a statistical mechanical treatment of loop formation shows that the two-disulfide intermediates are probably compact. All 28 disulfide bonds were observed, demonstrating the absence of specific long-range interactions in these intermediates. Thermodynamic arguments suggest that the absence of such specific long-range interactions in the two-disulfide species may elevate the concentration of kinetically important three-disulfide intermediates and thereby increase the folding rate. Bond [65-72] was found to make up approximately 27% of the disulfide bonds of the two-disulfide species, significantly more than all other disulfides, because of stabilization by loop entropy factors and an energetically favorable beta-turn. This turn may be one of several chain-folding initiation sites, accelerating folding by decreasing the dimensionality of the conformational space that has to be searched.  相似文献   

15.
The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (designated as III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that interconvert, reaching an equilibrium prior to the formation of the scrambled isomers. Given that these intermediates act as kinetic traps during the oxidative folding, their accumulation is prevented when they are destabilized, thus leading to a significant acceleration of the folding kinetics. III-A and III-B forms appear to have both native disulfides bonds and free thiols similarly protected from the solvent; major structural rearrangements through the formation of scrambled isomers are required to render native LCI. The reductive unfolding pathway of LCI undergoes an apparent all-or-none mechanism, although low amounts of intermediates III-A and III-B can be detected, suggesting differences in protection against reduction among the disulfide bonds. The characterization of III-A and III-B forms shows that the former intermediate structurally and functionally resembles native LCI, whereas the III-B form bears more resemblance to scrambled isomers.  相似文献   

16.
The disulfide bond-coupled folding and unfolding mechanism (at pH 8.7, 25 degrees C in the presence of oxidized and reduced dithiothreitol) was determined for a bovine pancreatic trypsin inhibitor mutant in which cysteines 30 and 51 were replaced with alanines so that only two disulfides, between cysteines 14 and 38 and cysteines 5 and 55, remain. Similar studies were made on a chemically-modified derivative of the mutant retaining only the 5-55 disulfide. The preferred unfolding mechanism for the Ala30/Ala51 mutant begins with reduction of the 14-38 disulfide. An intramolecular rearrangement via thiol-disulfide exchange, involving the 5-55 disulfide and cysteines 14 and/or 38, then occurs. At least five of six possible one-disulfide bond species accumulate during unfolding. Finally, the disulfide of one or more of the one-disulfide bond intermediates (excluding that with the 5-55 disulfide) is reduced giving unfolded protein. The folding mechanism seems to be the reverse of the unfolding mechanism; the observed folding and unfolding reactions are consistent with a single kinetic scheme. The rate constant for the rate-limiting intramolecular folding step--rearrangements of other one-disulfide bond species to the 5-55 disulfide intermediate--seems to depend primarily on the number of amino acids separating cysteines 5 and 55 in the unfolded chain. The energetics and kinetics of the mutant's folding mechanism are compared to those of wild-type protein [Creighton, T. E., & Goldenberg, D. P. (1984) J. Mol. Biol. 179, 497] and a mutant missing the 14-38 disulfide [Goldenberg, D. P. (1988) Biochemistry 27, 2481]. The most striking effects are destabilization of the native structure and a large increase in the rate of unfolding.  相似文献   

17.
Salamanca S  Chang JY 《Biochemistry》2005,44(2):744-750
Alpha-lactalbumin (alphaLA)-IIIA is a major kinetic intermediate present along the pathways of reductive unfolding and oxidative folding of bovine alpha-lactalbumin (alphaLA). It is a three-disulfide variant of native alphaLA lacking Cys(6)-Cys(120) at the alpha-helical domain. Stability and the unfolding/refolding mechanism of carboxymethylated alphaLA-IIIA have been investigated previously by stop-flow circular dichroism (CD) and fluorescence spectroscopy. A stable intermediate compatible with molten globule was shown to exist along the pathways of unfolding-refolding of alphaLA-IIIA [Ikeguchi et al. (1992) Biochemistry 31, 16695-12700; Horng et al. (2003) Proteins 52, 193-202]. We investigate here the unfolding-refolding pathways and conformational stability of alphaLA-IIIA using the method of disulfide scrambling with the following specific aims: (a) to isolate and characterize the observed stable molten globule, (b) to analyze the heterogeneity of folding-unfolding intermediates, (c) to elucidate the disulfide structure of extensively unfolded isomer of alphaLA-IIIA, and (d) to clarify the relative conformational stability between alphaLA-IIIA and alphaLA. Two scrambled isomers, designated as X-alphaLA-IIIA-c and X-alphaLA-IIIA-a (X stands for scrambled), were isolated under mild and strong denaturing conditions. Their disulfide structures, CD spectra, and manners of refolding to form the native alphaLA-IIIA were analyzed in this report. The results are consistent with the notion that X-alphaLA-IIIA-c and X-alphaLA-IIIA-a represent a partially unfolded and an extensively unfolded isomers of native alphaLA-IIIA, respectively. The unfolding-refolding pathways of alphaLA-IIIA are elaborated and compared with that of intact alphaLA. These results display new insight into one of the most extensively studied molecules in the field of protein folding and unfolding.  相似文献   

18.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

19.
D Amir  S Krausz  E Haas 《Proteins》1992,13(2):162-173
The structure of BPTI and reduced BPTI in concentrated guanidinium HCl (GUHCl) in the presence of glycerol has been probed by measurements of dynamic nonradiative excitation energy transfer between probes attached to its amino groups. Interprobe distance distributions were obtained from analysis of donor fluorescence decay curves and used to characterize local structures in unordered states of the protein. Site specifically fluorescently labeled BPTI derivatives (1-n)BPTI (n = 15, 20, 41, 46) were used, each carrying a 2-methoxy-naphthyl-1-methylenyl group (MNA) at the N-terminal amino group of arg1 and 7-(dimethylamino)-coumarin-4-yl-acetyl residue (DA-coum) at one of its epsilon-NH2 groups of the lysine side chains. Analysis of donor fluorescence decay kinetics gave the interprobe distance distributions in the native and denatured states. The N-terminal-segment, residues 1-15, is in an extended conformation (with an average interprobe distance of 34 +/- 2 A) in the native state. Upon unfolding by reduction with DTT or beta-mercapto ethanol in 6 M GUHCl/glycerol mixture, the conformation of this segment relaxed to a state characterized by a reduced average interprobe distance and a larger width of the distances distribution. The average distance between residues 1 and 26, i.e., between the N-terminus and the turn of the twisted beta sheet element (residues 18-35), increased upon unfolding. At -30 degrees C in the above solvent, the distribution between these two sites was probably composed of two conformational subpopulations. About 45 +/- 20% of the molecules were characterized by a short interprobe distance (like the native state) representing a compact conformation, and 55 +/- 20% of the molecules showed large interprobe distances representing an expanded (unfolded) conformation. Thus local structures seem to exist in reduced denatured BPTI even under denaturing conditions in 6 M GUHCl/glycerol mixtures. Some of those structures are unstable in guanidinium isothiocyanate (GUSCN). The method introduced here is suitable for probing local structures and very long range interactions in unfolded proteins and for search for folding initiation sites (FISs) and early folding intermediates.  相似文献   

20.
Human epidermal growth factor (hEGF) contains 53 amino acids and three disulfide bonds. The unfolded, reduced hEGF is allowed to refold under mildly alkaline conditions. The folding is quenched at different time points by adjusting the pH to 3.0 with an acetic acid solution of 1-cyano-4-dimethylamino-pyridinium (CDAP) which traps folding intermediates via cyanylation of free sulfhydryl groups. The mixture of cyanylated intermediates is separated by reversed-phase HPLC; the fractions collected are identified by mass spectrometry. The disulfide structures of the intermediates are then determined by specific chemical cleavage and mass-mapping by MALDI-MS, a novel approach developed in our laboratory. The procedure of quenching and trapping of disulfide intermediates in acidic solution minimizes sulfhydryl-disulfide exchange, and therefore provides a good measure of folding kinetics and preservation of intermediate species. Our cyanylation methodology for disulfide mapping is simpler, faster, and more sensitive than the more conventional approach. Among 18 folding intermediates isolated and identified at different time points, disulfide structures of seven well-populated intermediates, including two non-native isomers with scrambled disulfide structures, one 2-disulfide intermediate, and four 1-disulfide intermediates, have been characterized; most of them possess non-native disulfide structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号