首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of cell division in the expression of muscle actin and its relationship to acetylcholinesterase (AChE) development was examined in cleavage-arrested embryos of the ascidian Styela. Muscle actin expression was detected by two-dimensional gel electrophoresis of radioactively labelled proteins and by in situ hybridization with a cDNA probe, whereas AChE activity was assayed by enzyme histochemistry. In the majority of cases, muscle actin expression was first detected in embryos arrested after the 16-cell stage. Some embryos showed muscle actin expression after arrest at the 8-cell stage, however, muscle actin mRNA did not accumulate in embryos arrested at earlier cleavages. The cells that expressed muscle actin in 8- to 64-cell cleavage-arrested embryos belonged to the primary muscle lineage; secondary muscle cell precursors did not express muscle actin. Zygotic muscle actin mRNA appeared to accumulate with myoplasmic pigment granules in the perinuclear region of cleavage-arrested embryos, suggesting that the myoplasm may have a role in the organization of muscle cells. In contrast to muscle actin, AChE was detected in a small proportion of embryos treated with cytochalasin as early as the 1- or 2-cell stage, and most embryos treated with cytochalasin at later cleavages expressed this enzyme in some of their cells. Most primary muscle lineage cells expressed both muscle actin mRNA and AChE, however, some cells expressed only muscle actin mRNA or AChE. The results suggest that at least three cleavages are required for muscle actin expression and that muscle actin and AChE expression can be uncoupled in cleavage-arrested embryos.  相似文献   

3.
Environmental temperature varies spatially and temporally, affecting many aspects of an organism’s biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.  相似文献   

4.
Severe injuries to the extremities often result in muscle trauma and, in some cases, significant volumetric muscle loss (VML). These injuries continue to be challenging to treat, with few available clinical options, a high rate of complications, and often persistent loss of limb function. To facilitate the testing of regenerative strategies for skeletal muscle, we developed a novel quadriceps VML model in the rat, specifically addressing functional recovery of the limb. Our outcome measures included muscle contractility measurements to assess muscle function and gait analysis for evaluation of overall limb function. We also investigated treatment with muscle autografts, whole or minced, to promote regeneration of the defect area. Our defect model resulted in a loss of muscle function, with injured legs generating less than 55% of muscle strength from the contralateral uninjured control legs, even at 4 weeks post-injury. The autograft treatments did not result in significant recovery of muscle function. Measures of static and dynamic gait were significantly decreased in the untreated, empty defect group, indicating a decrease in limb function. Histological sections of the affected muscles showed extensive fibrosis, suggesting that this scarring of the muscle may be in part the cause of the loss of muscle function in this VML model. Taken together, these data are consistent with clinical findings of reduced muscle function in large VML injuries. This new model with quantitative functional outcome measures offers a platform on which to evaluate treatment strategies designed to regenerate muscle tissue volume and restore limb function.  相似文献   

5.
Prolonged periods of skeletal muscle inactivity lead to a loss of muscle protein and strength. Advances in cell biology have progressed our understanding of those factors that contribute to muscle atrophy. To this end, abundant evidence implicates oxidative stress as a potential regulator of proteolytic pathways leading to muscle atrophy during periods of prolonged disuse. This review will address the role of reactive oxygen species and oxidative stress as potential contributors to the process of disuse-mediated muscle atrophy. The first section of this article will discuss our current understanding of muscle proteases, sources of reactive oxygen in muscle fibers, and the evidence linking oxidative stress to disuse muscle atrophy. The second section of this review will highlight gaps in our knowledge relative to the specific role of oxidative stress in the regulation of disuse muscle atrophy. By discussing unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field.  相似文献   

6.
Summary Denervation of the expansor secundariorum muscle of the adult and 2 week chicken, by sectioning the brachial plexus, resulted in an approximate twofold increase in dry weight over 8 weeks. Unlike skeletal muscle, no ultrastructural changes were exhibited by the smooth muscle cells for a period of up to 5 months post denervation. No evidence of hypertrophy of the individual muscle cells was observed, but following colchicine treatment a definite increase in the number of mitotic figures was noted within muscle bundles indicating that the increase in dry weight of the expansor muscle is due to hyperplasia of the smooth muscle cells. The results are discussed in relation to in vitro studies of the interaction of sympathetic nerves with smooth muscle.  相似文献   

7.
The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation.  相似文献   

8.
This investigation examined the mechanical responses of malignant hyperthermic (MH) and normal porcine skeletal muscle to repetitive stimulation. Twitch and maximal tetanic tensions were not significantly different between muscle types. Tensions produced during stimulation at 20-80 Hz were significantly less in MH muscle than in normal muscle. In addition, MH muscle showed significantly greater force decline (tetanic fade) at the end of contractions evoked by 20-80 Hz stimulation. When stimulated to fatigue, both normal and MH muscle exhibited similar rates of tension decline during the initial minutes. Further stimulation caused additional decline in normal muscle, but a tension plateau in MH muscle. In all cases, normal muscle had greater magnitudes of fatigue than did MH muscle. Results show that there are marked differences between MH and normal muscle in the mechanical responses to repetitive stimulation. Due to its inability to properly regulate intracellular Ca2+ exchange, it is possible that MH muscle might be a useful tool for identifying the mechanisms of muscle fatigue in normal muscle.  相似文献   

9.
Summary Isoenzymes of glucose-6-phosphate isomerase (GPI: E.C. 5.3.1.9) were used as markers to determine the origin of cells which give rise to new muscle formed in allografts of whole intact muscle. GPI isoenzymes were also employed to see whether host precursor cells, which have been shown to contribute to muscle formation in grafts of minced muscle, can be derived from muscle lying adjacent to grafts.Excellent muscle regeneration was found in allografts of extensor digitorum longus (EDL) muscle examined after 58 days: 12 of 16 grafts contained 80% or more new muscle. Isoenzyme analysis showed that most, and in 2 instances all, new muscle was derived from implanted donor cells; however, there was strong evidence that in 5 grafts some, or all, new muscle must have resulted from host cells moving into the graft. Although hybrid isoenzyme was not detected this was attributed to factors associated with host tolerance which appear to interfere with fusion between host and donor myoblasts.Isografts of minced muscle were placed next to whole EDL muscle allografts to see if cells from allografts moved into adjacent regenerating tissue. Unfortunately, muscle regeneration in minced isografts was poor; only 3 contained 50% or more new muscle and most contained large amounts of fibrous connective tissue. Only a single isoenzyme band was detected in 11 isografts, but in five instances, the presence of a second band showed that cells from EDL allografts were also present. As no hybrid isoenzyme was detected, it is not known whether these cells which had moved into the regenerating minced grafts were muscle precursors, fibroblasts or some other cell types.  相似文献   

10.
We determined the percentages of muscle fibie nuclei and satellite nuclei over a growth range of carp ( Cyprinus carpio ), as the increase in the number of muscle fibre nuclei is an important aspect of the increase in muscle mass, and myosatellite cells are believed to be the source of new muscle fibre nuclei. In white as well as in red axial muscle the percentage of the nuclei present in muscle that are muscle nuclei (muscle fibre nuclei+myosatellite nuclei) remained constant during growth (54 and 32% respectively). The difference in the percentage of non-muscle nuclei between white and red axial muscle is mainly caused by the higher content of endothelial nuclei in red axial muscle.
In white axial muscle the DNA/protein ratio (nucleus/sarcoplasm ratio) decreased between 3 and 15 cm S.l. In red axial muscle we found a continuous decrease in DNA/protein ratio over the entire investigated size range (3–50 cm s.l.). This may be related to a longer occurrence of hyperplasia in red than in white axial muscle.
In both fibre types the percentage of muscle nuclei being myosatellite nuclei decreased with increasing length, In white axial muscle it decreased from about 5% in carp of 5 cm s.l. to less than 1% in carp of 20 cm S.L.; for red muscle these values were 11 and 3% respectively.
For white axial muscle we calculated that, especially in larger fish, the myosatellite ceils alone cannot account for the increase in the number of muscle fibre nuclei during growth. The percentage of proliferating nuclei in muscle tissue, measured by the uptake of 5-bromo-2'-deoxy-uridine, is high enough to account for the total increase in nuclei. So indirect evidence is available that another cell type present in the muscle tissue may also be involved in the formation of additional muscle fibre nuclei.  相似文献   

11.
Summary Cross-union of the tibial with the pudendal nerve innervating the androgen-sensitive levator ani (LA) muscle of male rats, results in reversal of the histochemical muscle fibre pattern concerning myofibrillar ATPase, succinate dehydrogenase and phosphorylase enzyme activities. The homogeneous muscle fibre pattern of the LA muscle is changed to a mosaic pattern of muscles normally innervated by the tibial nerve. The success of the hetero-reinnervation is shown by practically full recovery of muscle weight and of isometric twitch-contraction properties of the LA muscle. Castration of 2-months duration, i. e. lack of the male sex hormone, leads to marked atrophy but no change in histochemical muscle fibre pattern. Hetero-reinnervation of the LA muscle results in change of histochemical enzyme pattern even if the cross-union of nerves is performed after long periods of castration leading to very marked decrease of muscle fibre size. However, testosterone application alone after castration increases markedly muscle fibre size but does not lead to reversal of muscle fibre pattern. The myotropic hormonal influence on the target (LA) muscle is therefore primarily of myogenic origin and specificity of hormonal action is maintained even with a foreign nerve innervating the muscle. The experiments, thus, provide evidence for the differentiation of specific neural influences affecting muscle fibre pattern and hormonal influences in respect to the myotropic action of the sex hormone on the androgen-sensitive LA muscle.  相似文献   

12.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

13.
Role of innervation on the embryonic development of skeletal muscle   总被引:1,自引:0,他引:1  
Summary The extent to which the motor innervation regulates the embryonic development of skeletal muscle was investigated by comparing changes in normal, aneural, and paralyzed superior oblique muscle of the duck embryo. The muscle was made aneural by permanently destroying the trochlear motor neurons with electrocautery on day 7 i.e., three days prior to innervation. Embryos were paralyzed by daily application of -bungarotoxin onto the chorioallantoic membrane from day 10 onwards. The differentiation of myoblasts and myotubes in the aneural muscle was severely affected and did not progress to the myofiber stage. A mass of dead cells in the aneural muscle was replaced by connective tissue. Although the differentiation of myoblasts and myotubes was also retarded in the paralyzed muscle, numerous muscle cells progressed to the myofiber stage. Neuromuscular junctions of normal ultrastructure were seen in all paralyzed muscles. Degeneration of some cells in the paralyzed muscle occurred but there was no evidence of a massive wave of cell death similar to that observed in the aneural muscle. These observations suggest that both the trophic factors from the nerve and the nerve-evoked muscle activity are essential for the execution of the developmental program of the muscle. Trophic factors may play a larger role in differentiation, and maintenance of the muscle than muscle activity.Supported by a grant from the Muscular dystrophy Association and a grant from NIHWe are grateful to Beth McBride and Greg Oblak for their technical assistance  相似文献   

14.
Polyribosomes sedimenting in the manner characteristic of those from embryonic chick muscle, as described by Heywood et al. in 1967 (Proc. Natl Acad. Sci. U.S.A. 57,1002--1009) were reproducibly obtained from normal mouse muscle by homogenization of the muscle with a Dounce homogenizer. The polyribosome profiles of dystrophic muscle were qualitatively similar to those of normal muscle except that the relative amount of ribosomes in polyribosome complexes was smaller (44% +/- 3S.E.) in dystrophic muscle than in normal muscle (67% +/- 4S.E.). In spite of this difference, polyribosomes from dystrophic muscle incorporated amino acids in vitro at a faster rate and produced a larger amount of polypeptide at the end of the reaction than polyribosomes from normal muscle.  相似文献   

15.
Changes in fibre diameters of extraocular muscles of the rabbit were studied at different times after denervation. The whole inferior oblique muscle hypertrophied, while some of the muscle fibres hypertrophied and others showed atrophy, depending on the fibre type. Fibre types have been determined by their histochemical enzyme profile. In the central layer of the muscle the phasic muscle fibres, which are rich in mitochondria, exhibited a transient hypertrophy being maximal 4-5 weeks after denervation and afterwards they atrophied; other phasic muscle fibres, which are poor in mitochondria, atrophied without having shown any sign of hypertrophy. Special, putatively slow tonic muscle fibres, which have low enzyme activities, underwent small long-lasting increases of their diameters. In the superficial layer of extraocular muscle there are two types of extremely thin muscle fibres rich in mitochondira. Both these fibre types hypertrophied to the greatest degree and for a very long time. Comparable changes in fibre diameters as described here for the muscle fibre types of an extraocular muscle are known from special muscle fibres in other vertebrate  相似文献   

16.
We have purified and generated antisera to a 95 kDa skeletal muscle protein that constitutes the largest mass fraction of gelatin-agarose binding proteins in skeletal muscle. Preliminary results indicated that this 95 kDa chicken skeletal muscle protein bound strongly to gelatin-agarose and type IV collagen-agarose, suggesting a possible function in muscle cell adhesion to collagen. However, N-terminal sequencing of proteolytic fragments of the 95 kDa protein indicates that it is the chicken skeletal muscle form of glycogen phosphorylase, the binding of which to gelatin-agarose is unlikely to be biologically relevant. Further characterization showed that the skeletal muscle form of glycogen phosphorylase is immunologically distinct from the liver and brain forms in the chicken, and suggests that, unlike mammalian skeletal muscle, chicken skeletal muscle may have two phosphorylase isoforms. Furthermore, immunolocalization data and solubility characteristics of glycogen phosphorylase in muscle extraction experiments suggest the enzyme may interact strongly with an unidentified component of the muscle cytoskeleton. Thus, this study yields a novel purification technique for skeletal muscle glycogen phosphorylase, provides new information on the distribution and isoforms of glycogen phosphorylase, and provides a caveat for using gelatin affinity chromatography as a primary step in purifying collagen-binding proteins from skeletal muscle.  相似文献   

17.
Frog spinal cord reflex behaviors have been used to test the idea of spinal primitives. We have suggested a significant role for proprioception in regulation of primitives. However the in vivo behavior of spindle and golgi tendon receptors in frogs in response to vibration are not well described and the proportions of these proprioceptors are not established. In this study, we examine the selectivity of muscle vibration in the spinal frog. The aim of the study was (1) to examine how hindlimb muscle spindles and GTO receptors are activated by muscle vibration and (2) to estimate the relative numbers of GTO receptors and spindle afferents in a selected muscle, for comparison with the mammal. Single muscle afferents from the biceps muscle were identified in the dorsal roots. These were tested in response to biceps vibration, intramuscular stimulation and biceps nerve stimulation. Biceps units were categorized into two types: First, spindle afferents which had a high conduction velocity (approximately 20-30 m/s), responded reliably (were entrained 1:1) to muscle vibration, and exhibited distinct pauses to shortening muscle contractions. Second, golgi tendon organ afferents, which had a lower conduction velocity (approximately 10-20 m/s), responded less reliably to muscle vibration at physiologic muscle lengths, but responded more reliably at extended lengths or with background muscle contraction, and exhibited distinct bursts to shortening muscle contractions. Vibration responses of these units were tested with and without muscle curarization. Ensemble (suction electrode) recordings from the dorsal roots were used to provide rough estimates of the proportions of the two muscle afferent types.  相似文献   

18.
Of the computational models of the cervical spine reported in the literature, not one takes into account the changes in muscle paths due to the underlying vertebrae. Instead, all model the individual muscle paths as straight-line segments. The major aim of this study was to quantify the changes in muscle moment arm, muscle force and joint moment due to muscle wrapping in the cervical spine. Five muscles in a straight-line model of the cervical spine were wrapped around underlying vertebrae, and the results obtained from this model were compared against the original. The two models were then validated against experimental and computational data. Results show that muscle wrapping has a significant effect on muscle moment arms and therefore joint moments and should not be neglected.  相似文献   

19.
A non-invasive procedure was used to determine the effect of animal age on the growth response of muscle to passive stretch. Stretch increased patagialis muscle weight 61% in 6-week-old chicks and 34% in 10-month-old chicks, 28-month-old animals had an 18% loss of muscle mass during passive stretch. Removal of the stretch stimulus was followed by a rapid return of patagialis weight to control values in 6-week and 10-month animals, while muscle size of 28-month-old animals had not returned to control levels by 22 days, following removal of the stretch. The stretch-induced changes in muscle wet weight could, in part, be attributed to changes in muscle protein. Total muscle DNA content increased during rapid growth in 6-week- and 10-month-old chickens, and returned to control levels during muscle regression. Muscle hydroxyproline content increased in parallel with increases in muscle mass but did not return to control levels during muscle regression in 6-week-old animals. Results of the present study indicate that there was an effect of animal age on stretch-induced hypertrophy and regression of the patagialis muscle.  相似文献   

20.
It is known that a low-energy laser radiation can cause reflex suppression of immunity. The present experiments were designed to determine the plastic activity of allogenic muscle tissue in different conditions of a previous action of laser rays. The cross homotransplantation of gastrocnemius muscles was carried out between intact rats, or between rats in which 14 days before transplantation each hind leg was subjected to low-energy He-Ne laser radiation in dose of 7.5-9 J/cm2 (10 procedures, the duration of each exposure was equal to 5 min), or between intact and radiated rats. It was shown that the donor muscle tissue survived longer when a nonradiated muscle was transplanted into the radiated muscle bed. The axons grew into the donor muscle tissue. More allogenic muscle tissue was involved in contractile reaction when stimulation was carried out via the nerve. Laser radiation of a homotransplant alone, or that of a homotransplant and a muscle bed in the recipient was less effective. So, He-Ne laser radiation of the area of a planned allotransplantation decreased the transplant immunity response and favoured a longer development of allogenic muscle tissue. The viability of donor muscle tissue therewith increased, if the muscle allograft had not been subjected to a previous laser radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号