首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropathic pain is a major health issue that represents considerable social and economic burden worldwidely. In this study, we investigated the potential of catalpol, an iridoid glucoside of Rehmannia glutinosa Steud, to alleviate neuropathic pain. The potential analgesic effects of catalpol were evaluated by chronic constriction injury (CCI) and lumbar 5 spinal nerve ligation (L5 SNL) model. In addition, we explored whether catalpol altered the degree of microglia activation and neuroinflammation in rat spinal cord after CCI induction. Repeated administration of catalpol (1, 5, 25, and 125 mg/kg) reversed mechanical allodynia induced by CCI and L5 SNL in a dose-dependent manner in rats. Levels of activated microglia, activated NF-κB, and proinflammatory cytokines (IL-1β, IL-6, TNF-α) in lumber spinal cord were elevated in rats following CCI induction, and catalpol significantly inhibited these effects. Our results demonstrated that catalpol produces significant antinociceptive action in rodent behavioral models of neuropathic pain and that this effect is associated with modulation of neuroinflammation in spinal cord.  相似文献   

2.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   

3.
Recent studies have demonstrated that magnetic stimulation (MS) can induce cellular responses such as Ca2+ influx into the cultured neurons and glia, leading to increased intracellular phosphorylation. We have demonstrated previously that MS reduces rat neuropathic pain associated with the prevention of neuronal degeneration. Thus, we aimed to elucidate the actions of MS in relation to modulation of spinal neuron–glia and the descending inhibitory system in chronic pain. The male SD rats intrathecally implanted with catheters were subjected to sciatic nerve ligation (CCI). MS is a low power apparatus characterized by two different frequencies, 2 KHz and 83 MHz. Rats were given MS to the skin (injured sciatic nerve) for 10 min from the seventh day after CCI. The paw withdrawal latency (PWL) evoked by thermal stimuli was measured for 14 days after CCI. Immunohistochemistry for Iba-1 or GFAP was performed after 4% paraformaldehyde fixation (microscopic analysis). We employed microdialysis for measuring CSF 5-HIAA as a reflection of 5-HT release by MS stimulation. Following CCI, rats showed a decrease in PWL after CCI, and the decrease continued until the 14th day. With MS treatment, the decrease in PWL was reduced during the 10–14 day after CCI. Injection of JNK-1 inhibitors on the 14th day antagonized the analgesic effect of MS. MS also eliminated the CCI-induced decrease in GFAP immunoreactivity. Moreover, MS evoked spinal 5-HT release reflected by increase in spinal 5-HIAA level. Thus, we demonstrate that a novel magnetic stimulator used cutaneously can ameliorate chronic pain by not only preventing abnormal spinal neuron–glia interaction, but also through the activation of the supra-spinal descending inhibitory system.  相似文献   

4.
BackgroundPeripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity.PurposeThis study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain.MethodsSprague–Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies.ResultsThermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1β), inflammatory proteins (TNF-α, IL-1β, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats.ConclusionOur findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1β-dependent NF-κB activation.  相似文献   

5.
Long non-coding RNAs (lncRNAs) are involved in the progression of several diseases. The interactions among lncRNAs, microRNA (miRNAs) or their targeting genes are reported to play crucial roles in the development of diseases. LINC00657 is observed to be upregulated in several cancers. However, the biological role of LINC00657 in neuropathic pain progress is unclear. Hence, in our study, we aimed to investigate the function of LINC00657 in neuropathic pain development. A chronic constriction injury (CCI) rat model was established, and we found that LINC00657 was greatly increased in CCI rats associated with a decrease of miR-136. Inhibition of LINC00657 suppressed neuropathic pain via alleviating mechanical and thermal hyperalgesia. In addition, miR-136 overexpression can also inhibit the neuropathic pain development. MiR-136 was predicted to serve as a miRNA target of LINC00657, and dual-luciferase reporter assay confirmed the correlation between LINC00657 and miR-136. Moreover, we observed that the decrease of LINC00657 was able to inhibit the neuroinflammation of CCI rats by targeting expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β while miR-136 inhibitors reversed this phenomenon. Next, by using bioinformatics analysis, ZEB1 was predicted as a direct target of miR-136, and miR-136 could negatively modulate ZEB1 expression. Besides these, ZEB1 was remarkably increased in the CCI rats. Knockdown of ZEB1 can inhibit neuropathic pain development, while miR-136 inhibitors can reverse it. In conclusion, it was implied that LINC00657 can induce the neuropathic pain development via regulating miR-136/ZEB1 axis.  相似文献   

6.
目的:探讨外源性的电磁干预方法对神经病理性疼痛大鼠的镇痛效果。方法:将30只成熟的雄性SD大鼠随机等分成3组:空白对照组(Control),坐骨神经慢性压迫损伤(CCI)组以及坐骨神经慢性压迫损伤协同电磁刺激组(CCI+EMF)。CCI组和CCI+EMF组的20只大鼠建立坐骨神经慢性压迫损伤模型,CCI+EMF组大鼠行外源性的全身性电磁刺激干预(脉冲波形,频率15 Hz,强度30 Gs),每天刺激6小时。在CCI模型构建的第0、3、6、9、12及15天对大鼠测试和比较足底机械痛阈值、足底热痛阈值、运动功能评分和神经传导速率。结果:CCI组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率从CCI手术后的第3天即出现显著性降低,其6、9、12、15天足底机械痛阈值、足底热痛阈值及感觉神经传导速率均显著低于Control组(P0.01),而运动功能评分均显著高于Control组(P0.05)。CCI+EMF组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率在第9、12、15天显著高于CCI组大鼠(P0.05),而运动功能评分均显著高于CCI l组。结论:外源性的电磁刺激对于神经病理性疼痛大鼠具有良好的镇痛效果,有望成为一种临床治疗神经病理性疼痛的新的物理治疗手段。  相似文献   

7.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   

8.
The dysfunction of the nervous system contributes to neuropathic pain. Long noncoding RNAs are reported to participate in neuropathic pain. Recently, Linc00052 is implicated to be closely associated with multiple diseases. Nevertheless, the mechanisms of Linc00052 remain barely explored in neuropathic pain development. Currently, spinal nerve ligation (SNL) triggered neuropathic pain was employed in our investigation. Here, we assessed the function of Linc00052 in SNL rat models. Interestingly, we reported Linc00052 was significantly elevated in SNL rats. Loss of Linc00052 could reduce neuropathic pain progression via regulating the behaviors of neuropathic pain. Additionally, knockdown of Linc00052 repressed the processes of neuroinflammation. Interleukin (IL)-6 and tumor necrosis factor α level were inhibited while IL-10 was induced by the silence of Linc00052. Moreover, we predicted miR-448 can serve as a target of Linc00052. miR-448 exerts a crucial power in several diseases. Currently, we exhibited miR-448 was remarkably downregulated in SNL rats. RNA immunoprecipitation experiments validated the association between miR-448 and Linc00052. Inhibition of Linc00052 could reverse the roles of miR-448 on neuropathic pain development. Furthermore, Janus kinase 1 (JAK1) was displayed as the putative target of miR-448 in the present investigation. It was showed that JAK1 was induced in SNL rats. Loss of miR-448 could dramatically induce the expression of JAK1, which was rescued by knockdown of Linc00052. Taken these together, our study implied that Linc00052 functioned as a novel target of neuropathic pain via sponging miR-448 and regulating JAK1.  相似文献   

9.
10.
AimsWe examined the possible involvement of spontaneous on-going pain in the rat chronic constriction injury (CCI) model of neuropathic pain.Main methodsThe development of weight bearing deficit, as an index of spontaneous on-going pain, was investigated in comparison to that of mechanical allodynia in CCI rats. We also examined the effects of morphine and a gabapentin analogue (1S, 3R)-3-methyl-gabapentin (3-M-gabapentin) on both the CCI-induced weight bearing deficit and mechanical allodynia.Key findingsRats with CCI demonstrated a significant reduction in weight bearing of the injured limb with a peak at a week post-operation, which was followed by a gradual recovery for over 7 weeks. The time course of development and recovery of CCI-induced weight bearing deficit appeared to follow that of foot deformation of the affected hind limb. CCI also evoked mechanical allodynia that was fully developed on a week post-operation, but showed no recovery for at least 8 weeks. 3-M-gabapentin significantly inhibited CCI-induced mechanical allodynia, but not weight bearing deficit, at 100 mg/kg p.o. Likewise, morphine was without significant effect on CCI-induced weight bearing deficit at the dose (3 mg/kg, s.c.) that could almost completely inhibit mechanical allodynia, whereas it inhibited both mechanical allodynia and weight bearing deficit at 6 mg/kg, s.c.SignificanceThe present findings suggest that CCI-induced weight bearing deficit is not a consequence of mechanical allodynia, but is attributable to spontaneous on-going pain. The rat CCI model of neuropathic pain thus represents both spontaneous on-going pain and mechanical allodynia.  相似文献   

11.
Controlling neuropathic pain is an unmet medical need and we set out to identify new therapeutic candidates. AV411 (ibudilast) is a relatively nonselective phosphodiesterase inhibitor that also suppresses glial-cell activation and can partition into the CNS. Recent data strongly implicate activated glial cells in the spinal cord in the development and maintenance of neuropathic pain. We hypothesized that AV411 might be effective in the treatment of neuropathic pain and, hence, tested whether it attenuates the mechanical allodynia induced in rats by chronic constriction injury (CCI) of the sciatic nerve, spinal nerve ligation (SNL) and the chemotherapeutic paclitaxel (Taxol). Twice-daily systemic administration of AV411 for multiple days resulted in a sustained attenuation of CCI-induced allodynia. Reversal of allodynia was of similar magnitude to that observed with gabapentin and enhanced efficacy was observed in combination. We further show that multi-day AV411 reduces SNL-induced allodynia, and reverses and prevents paclitaxel-induced allodynia. Also, AV411 cotreatment attenuates tolerance to morphine in nerve-injured rats. Safety pharmacology, pharmacokinetic and initial mechanistic analyses were also performed. Overall, the results indicate that AV411 is effective in diverse models of neuropathic pain and support further exploration of its potential as a therapeutic agent for the treatment of neuropathic pain.  相似文献   

12.

Background

Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia.

Methodology/Principal findings

In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord.

Conclusion/Significance

Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.  相似文献   

13.
14.
Neuropathic pain, resulting from somatosensory nervous system dysfunction, remains a serious public health problem worldwide. microRNAs are involved in the physiological processes of neuropathic pain. However, the biological roles of miR-98 in neuropathic pain development have not been investigated. Therefore, in our current study, we focused on the effects of miR-98 in neuropathic pain. It was shown that miR-98 was significantly downregulated in chronic sciatic nerve injury (CCI) rat models. In addition, high mobility group A2 (HMGA2) was obviously upregulated in CCI rats. Overexpression of miR-98 inhibited neuropathic pain progression, including mechanical and thermal hyperalgesia. By a bioinformatics analysis, HMGA2 was predicted as a direct target of miR-98. The negative correlation between miR-98 and HMGA2 was validated in our present study. Furthermore, overexpression of miR-98 dramatically repressed HMGA2 protein and messenger RNA (mRNA) expression. Neuroinflammation participates in neural-immune interactions, which can contribute to the neuropathic pain development. Meanwhile, we found that inflammatory cytokine (interleukin [IL]-6, IL-1β, and COX-2) protein expression in rats infected with LV-miR-98 was greatly suppressed. Taking these results together, we concluded that miR-98 might depress neuropathic pain development through modulating HMGA2.  相似文献   

15.
Feng  Xiang-Lan  Deng  Hong-Bo  Wang  Zheng-Gang  Wu  Yun  Ke  Jian-Juan  Feng  Xiao-Bo 《Neurochemical research》2019,44(2):450-464

Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n?=?100 nmol/day or n?=?200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.

  相似文献   

16.
Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However, their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study, we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist Leu31Pro34-NPY, in rats with chronic constriction injury (CCI). CCI and sham-injury rats were implanted with a permanent intrathecal catheter (at day 7 after injury), and their response to the administration of different doses (2.5, 5, 7, 10 or 20 μg) of Leu31Pro34-NPY (at a volume of 10 μl) through the implanted catheter, recorded 14 days after injury. Mechanical allodynia was tested by means of the up-and-down method, using von Frey filaments. Cold allodynia was tested by application of an acetone drop to the affected hindpaw. Intrathecal Leu31Pro34-NPY induced an increase of mechanical thresholds in rats with CCI, starting at doses of 5 μg and becoming stronger with higher doses. Intrathecal Leu31Pro34 also resulted in reductions in the frequency of withdrawal to cold stimuli, although the effect was somewhat more moderate and mostly observed for doses of 7 μg and higher. We thus show that spinal activation of the Y1R is able to reduce neuropathic pain due to a chronic constrictive injury and, together with other studies, support the use of a spinal Y1R agonist as a therapeutic agent against chronic pain induced by peripheral neuropathy.  相似文献   

17.
Liu S  Xu C  Li G  Liu H  Xie J  Tu G  Peng H  Qiu S  Liang S 《Neurochemistry international》2012,60(6):565-572
Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1 μM, an inhibitor of VEGF receptors). The stain values of VEGFR-2, P2X(2) and P2X(3) protein expression in L4/5 DRG of CCI treated with Vatalanib group were significantly decreased compared with those in CCI group (p<0.01). Vatalanib can alleviate chronic neuropathic pain by decreasing the activation of VEGF on VEGFR-2 and the positive interaction between the up-regulated VEGFR-2 and P2X(2/3) receptors in the neuropathic pain signaling.  相似文献   

18.
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models.  相似文献   

19.
BackgroundNeuropathic pain has been shown to be modulated by the activation of the chemokine C-X-C motif ligand 12 (CXCL12)/chemokine CXC receptor 4 (CXCR4) dependent nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. Loganin, an iridoid glycoside, was proven to prevent neuropathic pain, but its underlying mechanisms related to NLRP3 activation are still unknown.PurposeThis study investigated the underlying mechanisms of loganin's effect on chronic constriction injury (CCI)-induced NLRP3 inflammasome activation in the spinal cord.MethodsSprague-Dawley rats were randomly divided into four groups: sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was administered intraperitoneally starting the day after surgery. Paw withdrawal threshold (PWT) and latency (PWL) were assessed before CCI and on days 1, 3, 7 and 14 after CCI. Spinal cords were collected for western blots and immunofluorescence studies.ResultsLoganin prevented CCI-attenuated PWT and PWL, suggesting improved mechanical allodynia and thermal hyperalgesia. The expression of CXCL12, CXCR4, thioredoxin-interacting protein (TXNIP), NLRP3 inflammasome (NLRP3, ASC, and caspase-1), IL-1β, and IL-18 were enhanced on day 7 after CCI, and all were reduced after loganin treatment. Dual immunofluorescence also showed that increased CXCL12, CXCR4, and NLRP3 were colocalized with NeuN (neuronal marker), GFAP (astrocyte marker), and Iba1 (microglial marker) on day 7 in the ipsilateral spinal dorsal horn (SDH). These immunoreactivities were attenuated in loganin-treated rats. Moreover, loganin decreased the assembly of NLRP3/ASC inflammasome after CCI in the ipsilateral SDH. Loganin appears to attenuate CCI-induced neuropathic pain by suppressing CXCL12/CXCR4-mediated NLRP3 inflammasome.ConclusionOur findings suggest that loganin might be a suitable candidate for managing CCI-provoked neuropathic pain.  相似文献   

20.

Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号