首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-sensitive dyes were used to record by optical means membrane potential changes from nerve terminals in the isolated frog neurohypophysis. Following the block of voltage-sensitive Na+ channels by tetrodotoxin (TTX) and K+ channels by tetraethylammonium (TEA), direct electric field stimulation of the nerve terminals still evoked large active responses. These responses were reversibly blocked by the addition of 0.5 mM CdCl2. At both normal and low [Na+]o, the regenerative response appeared to increase with increasing [Ca++]o (0.1-10 mM). There was a marked decrease in the size of the response, as well as in its rate of rise, at low [Ca++]o (0.2 mM) when [Na+]o was reduced from 120 to 8 mM (replaced by sucrose), but little if any effect of this reduction of [Na+]o at normal [Ca++]o. In normal [Ca++]o, these local responses most probably arise from an inward Ca++ current associated with hormone release from these nerve terminals. At low [Ca++]o, Na+ appears to contribute to the TTX-insensitive inward current.  相似文献   

2.
An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.  相似文献   

3.
A period of electrical activity in unmyelinated nerve fibers is followed by a post-tetanic hyperpolarization (PTH), generated by the hyperactivity of the electrogenic Na(+)-K(+) pump. In order to protect the membrane potential against these strong hyperpolarizations, different types of axonal inward currents are activated during the PTH. We investigated in the rabbit vagus nerve one of these currents, which was activated by carbamylcholine (CCh). We observed that the effect of CCh on the PTH amplitude could be blocked or reversed with scopolamine. Moreover, the PTH amplitude increased when scopolamine alone was added to the perfusate, indicating that an endogenous muscarinic agonist was liberated in the preparation during the period of electrical activity. This CCh-activated current was TEA but not Ba(2+) or Cs(+) sensitive. It has been shown previously that muscarinic acetylcholine receptors (mAChRs) in the rabbit vagus nerve are located on the axonal but not glial membrane and that Schwann cells express several types of purinergic receptors, which activation evoke Ca(2+) transients in Schwann cells. We hypothesise that during electrical activity axons release a transmitter, presumably ATP. This transmitter evoke in the neighbouring Schwann cells a Ca(2+)-dependent liberation of a endogenous muscarinic agonist, which in turn activates a TEA-sensitive inward current in axons. We suggest that the major purpose of this mechanism is the control of the membrane potential during and after a period of intense electrical activity when the Na(+)-K(+) pump generates a robust PTH.  相似文献   

4.
The regulation of the open probability of the epithelial Na(+) channel (ENaC) by the extracellular concentration of Na(+), a phenomenon called "Na(+) self inhibition," has been well described in several natural tight epithelia, but its molecular mechanism is not known. We have studied the kinetics of Na(+) self inhibition on human ENaC expressed in Xenopus oocytes. Rapid removal of amiloride or rapid increase in the extracellular Na(+) concentration from 1 to 100 mM resulted in a peak inward current followed by a decline to a lower quasi-steady-state current. The rate of current decline and the steady-state level were temperature dependent and the current transient could be well explained by a two-state (active-inactive) model with a weakly temperature-dependent (Q(10)act = 1.5) activation rate and a strongly temperature-dependant (Q(10)inact = 8.0) inactivation rate. The steep temperature dependence of the inactivation rate resulted in the paradoxical decrease in the steady-state amiloride-sensitive current at high temperature. Na(+) self inhibition depended only on the extracellular Na(+) concentration but not on the amplitude of the inward current, and it was observed as a decrease of the conductance at the reversal potential for Na(+) as well as a reduction of Na(+) outward current. Self inhibition could be prevented by exposure to extracellular protease, a treatment known to activate ENaC or by treatment with p-CMB. After protease treatment, the amiloride-sensitive current displayed the expected increase with rising temperature. These results indicate that Na(+) self inhibition is an intrinsic property of sodium channels resulting from the expression of the alpha, beta, and gamma subunits of human ENaC in Xenopus oocyte. The extracellular Na(+)-dependent inactivation has a large energy of activation and can be abolished by treatment with extracellular proteases.  相似文献   

5.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca(2+) channels are important structural determinants for the passage of Ca(2+) across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a 1S subunit of the skeletal L-type channel (Ca(v)1.1) to lysine virtually eliminates passage of Ca(2+) during step depolarizations. In this study, we examined the ability of this mutant Ca(v)1.1 channel (SkEIIIK) to conduct inward Na(+) current. When 150 mM Na(+) was present as the sole monovalent cation in the bath solution, dysgenic (Ca(v)1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na(+). Ca(2+) block of SkEIIIK-mediated Na(+) current was revealed by the substantial enhancement of Na(+) current amplitude after reduction of Ca(2+) in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na(+) currents through the mutant Ca(v)1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na(+) channel when Na(+) is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca(2+) permeability mediated by Ca(v) channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

6.
Stoeckel H  Takeda K 《Protoplasma》2002,220(1-2):79-87
Plasmalemmal ionic currents from enzymatically isolated protoplasts of suspension-cultured tobacco 'Bright Yellow-2' cells were investigated by whole-cell patch-clamp techniques. In all protoplasts, delayed rectifier outward K(+) currents having sigmoidal activation kinetics, no inactivation, and very slow deactivation kinetics were activated by step depolarization. Tail current reversal potentials were close to equilibrium potential E(K) when external [K(+)] was either 6 or 60 mM. Several channel blockers, including external Ba(2+), niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, inhibited this outward K(+) current. Among the monovalent cations tested (NH(4)(+), Rb(+), Li(+), Na(+)), only Rb(+) had appreciable permeation (P(Rb)/P(K) (=) 0.7). In addition, in 60 mM K(+) solutions, a hyperpolarization-activated, time-dependent, inwardly rectifying K(+) current was observed in most protoplasts. This inward current activated very slowly, did not inactivate, and deactivated quickly upon repolarization. The tail current reversal potential was very close to E(K), and other monovalent cations (NH(4)(+), Rb(+), Li(+), Na(+)) were not permeant. The inward current was blocked by external Ba(2+) and niflumic acid. External Cs(+) reversibly blocked the inward current without affecting the outward current. The amplitude of the inward rectifier K(+) current was generally small compared to the amplitude of the outward K(+) current in the same cell, although this was highly variable. Similar amplitudes for both currents occurred in only 4% of the protoplasts in control conditions. Microfilament-depolymerizing drugs shifted this proportion to about 12%, suggesting that microfilaments participate in the regulation of K(+) currents in tobacco 'Bright Yellow-2' cells.  相似文献   

7.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

8.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

9.
Depolarization of pancreatic beta-cells is critical for stimulation of insulin secretion by acetylcholine but remains unexplained. Using voltage-clamped beta-cells, we identified a small inward current produced by acetylcholine, which was suppressed by atropine or external Na(+) omission, but was not mimicked by nicotine, and was insensitive to nicotinic antagonists, tetrodotoxin, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DiDS), thapsigargin pretreatment, and external Ca(2+) and K(+) removal. This suggests that muscarinic receptor stimulation activates voltage-insensitive Na(+) channels distinct from store-operated channels. No outward Na(+) current was produced by acetylcholine when the electrochemical Na(+) gradient was reversed, indicating that the channels are inward rectifiers. No outward K(+) current occurred either, and the reversal potential of the current activated by acetylcholine in the presence of Na(+) and K(+) was close to that expected for a Na(+)-selective membrane, suggesting that the channels opened by acetylcholine are specific for Na(+). Overnight pretreatment with pertussis toxin or the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) or guanosine-5'-O-(2-thiodiphosphate) (GDP-beta-S) instead of GTP to the pipette solution did not alter this current, excluding involvement of G proteins. Injection of a current of a similar amplitude to that induced by acetylcholine elicited electrical activity in beta-cells perifused with a subthreshold glucose concentration. These results demonstrate that muscarinic receptor activation in pancreatic beta-cells triggers, by a G protein-independent mechanism, a selective Na(+) current that explains the plasma membrane depolarization.  相似文献   

10.
The aim of this study was to investigate whether or not the activity of the cardiac Na(+)-Ca(2+) exchanger might be directly sensitive to external K(+) concentration ([K(+)](e)). Measurements of whole-cell exchanger current (I(NaCa)) were made at 37 degrees C from guinea-pig isolated ventricular myocytes, using whole-cell patch clamp recording with major interfering conductances blocked. Changing [K(+)](e) from 0 to 5mM significantly reduced both outward and inward exchange currents in a time-dependent manner. Various [K(+)](e) between 1 and 15 mM were tested and the inhibitory effect was observed to be concentration-dependent. At steady-state, 5mM [K(+)](e) decreased the density of Ni(2+)-sensitive current by 52.8+/-4.3% (mean+/-S.E.M., n=6) and of 0Na0Ca-sensitive current by 39.0+/-4.4% (n=5). The possibility that the inhibitory effect of external K(+) on I(NaCa) might wholly or in part be secondary to activation of the sarcolemmal Na(+)-K(+) pump was investigated by testing the effect of K(+) addition in the presence of a high concentration of strophanthidin (500 microM). Ni(2+)-sensitive I(NaCa) was still observed to be sensitive to external K(+) (I(NaCa) decreased by 39.4+/-9.4%, n=4), suggesting that the inhibitory effect could occur independently of activation of the Na(+)-K(+) pump. The effect of external K(+) on I(NaCa) was verified using a baby hamster kidney (BHK) cell line stably expressing the cardiac Na(+)-Ca(2+) exchanger isoform, NCX1. Similar to native I(NaCa), NCX1 current was also suppressed by [K(+)](e). However, [K(+)](e) did not alter current amplitude in untransfected BHK cells. The effect of [K(+)](e) on I(NaCa) could not be attributed to simply adding any monovalent cation back to the external solution, since it was not reproduced by application of equimolar Li(+), Cs(+) and TEA(+). Rb(+), however, could mimic the effect of K(+). Collectively, these data suggest that external K(+) at physiologically and pathologically relevant concentrations might be able to modulate directly the activity of the cardiac Na(+)-Ca(2+) exchanger.  相似文献   

11.
Most of the physiological information on the enteric nervous system has been obtained from studies on preparations of the myenteric ganglia attached to the longitudinal muscle layer. This preparation has a number of disadvantages, e.g., the inability to make patch-clamp recordings and the occurrence of muscle movements. To overcome these limitations we used isolated myenteric ganglia from the guinea pig small intestine. In this preparation movement was eliminated because muscle was completely absent, gigaseals were obtained, and whole cell recordings were made from neurons and glial cells. The morphological identity of cells was verified by injecting a fluorescent dye by micropipette. Neurons displayed voltage-gated inactivating inward Na(+) and Ca(2+) currents as well as delayed-rectifier K(+) currents. Immunohistochemical staining confirmed that most neurons have Na(+) channels. Neurons responded to GABA, indicating that membrane receptors were retained. Glial cells displayed hyperpolarization-induced K(+) inward currents and depolarization-induced K(+) outward currents. Glia showed large "passive" currents that were suppressed by octanol, consistent with coupling by gap junctions among these cells. These results demonstrate the advantages of isolated ganglia for studying myenteric neurons and glial cells.  相似文献   

12.
13.
We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na+-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of l-glutamate.  相似文献   

14.
Using the patch-clamp method, we studied the influence of external alkali and organic monovalent cations on the single-channel properties of the adenosine triphosphate (ATP)-activated recombinant human P2X(7) receptor. The slope conductance of the hP2X(7) channel decreased and the reversal potential was shifted to more negative values as the ionic diameter of the organic test cations increased. From the relationship between single-channel conductance and the dimensions of the inward current carrier, the narrowest portion of the pore was estimated to have a mean diameter of approximately 8.5 A. Single-channel kinetics and permeation properties remained unchanged during receptor activation by up to 1 mM ATP(4-) for >1 min, arguing against a molecular correlate of pore dilation at the single P2X(7) channel level. Substitution of extracellular Na(+) by any other alkali or organic cation drastically increased the open probability of the channels by prolonging the mean open time. This effect seems to be mediated allosterically through an extracellular voltage-dependent Na(+) binding site with a K(d) of approximately 5 mM Na(+) at a membrane potential of -120 mV. The modulation of the ATP-induced hP2X(7) receptor gating by extracellular Na(+) could be well described by altering the rate constant from the open to the neighboring closed state in a C-C-C-O kinetic receptor model. We suggest that P2X(7) receptor-induced depolarization and associated K(+)-efflux may reduce Na(+) occupancy of the regulatory Na(+) binding site and thus increase the efficacy of ATP(4-) in a feed-forward manner in P2X(7) receptor-expressing cells.  相似文献   

15.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Leeches Hirudo medicinalis were exposed to either artificial pond water (APW; 1 mM NaCl) or to high-salinity conditions (HS; 200 mM NaCl) for several days. The aim of the study was to assess whether transepithelial ion conductances in their dorsal integuments were affected by this long-term acclimation. In voltage-clamp experiments using Ussing-type chambers, the transepithelial potential V(T) was clamped to 0 mV, and amiloride-sensitive currents (I(ami)) and total Na(+) transport (I(Na)) were determined. Apical Ca(2+)-free conditions strongly increased I(ami) to a similar magnitude in both differently acclimated integuments. Apical application of the lanthanide gadolinium <0.1 mM decreased the short-circuit current (I(sc)). In contrast, higher concentrations up to 10 mM Gd(3+) upregulated I(sc) by an additional 90% in APW integuments and by an additional 300% in HS integuments. This Gd(3+) effect was due to a doubling of I(Na) in APW and a more than sixfold increase of I(Na) in HS integuments. In summary, the macroscopic electrophysiological variables, including I(Na), were generally not affected by long-term exposure to high salinity. However, the presence of Gd(3+)-sensitive Na(+) conductances or regulating structures were greatly upregulated during HS acclimation.  相似文献   

17.
We have investigated the mechanisms by which activation of cannabinoid receptors reduces glutamate release from cerebrocortical nerve terminals. Glutamate release evoked by depolarization of nerve terminals with high KCl (30 mmol/L) involves N and P/Q type Ca(2+)channel activation. However, this release of glutamate is independent of Na(+) or K(+) channel activation as it was unaffected by blockers of these channels (tetrodotoxin -TTX- or tetraethylammonium TEA). Under these conditions in which only Ca(2+) channels contribute to pre-synaptic activity, the activation of cannabinoid receptors with WIN55,212-2 moderately reduced glutamate release (26.4 +/- 1.2%) by a mechanism that in this in vitro model is resistant to TTX and consistent with the inhibition of Ca(2+) channels. However, when nerve terminals are stimulated with low KCl concentrations (5-10 mmol/L) glutamate release is affected by both Ca(2+) antagonists and also by TTX and TEA, indicating the participation of Na(+) and K(+) channel firing in addition to Ca(2+) channel activation. Interestingly, stimulation of nerve terminals with low KCl concentrations uncovered a mechanism that further inhibited glutamate release (81.78 +/- 4.9%) and that was fully reversed by TEA. This additional mechanism is TTX-sensitive and consistent with the activation of K(+) channels. Furthermore, Ca(2+) imaging of single boutons demonstrated that the two pre-synaptic mechanisms by which cannabinoid receptors reduce glutamate release operate in distinct populations of nerve terminals.  相似文献   

18.
The effect of menthol on the discharge pattern of feline nasal and lingual cold receptors was analyzed in order to elucidate the underlying sensory transducer mechanism. A repetitive beating activity and burst (grouped) discharges were observed in both cold receptor populations at constant temperatures and after rapid cooling. An analysis of the impulse activity revealed a cyclic pattern of impulse generation, which suggested the existence of an underlying receptor potential oscillation that initiates impulses in the afferent nerve when it exceeds a threshold value. The frequency and amplitude of the periodic impulse-inducing receptor processes were characterized by the burst frequency, which increased with warming, and by the average number of impulses generated during each cycle, which increased with cooling. Menthol at micromolar concentrations induced an acceleration of the burst frequency at higher temperatures, but reduced the burst frequency in the midtemperature range. At temperatures above 25 degrees C, menthol increased the number of impulses elicited during each cycle and induced bursting in previously repetitively discharging fibers. At low temperatures, menthol suppressed bursting and finally inhibited all cold receptor activity. The impulse pattern at constant temperatures and during the dynamic response to rapid cooling was comparably affected by menthol. Calcium application completely abolished the stimulating menthol effect. Since, in equal concentrations, menthol specifically impairs neuronal calcium currents, the results are consistent with the conjecture that in cold receptors, menthol reduces the activation of a calcium-stimulated outward current by an impeding effect on a calcium conductance, thereby inducing depolarization and a modification of bursting behavior. The data confirm the hypothesis of a calcium-controlled outward conductance being involved in the generation of cyclic afferent activity in cold receptors.  相似文献   

19.
In olfactory receptor cells, it is well established that cyclic AMP (cAMP) and inositol-1,4,5-trisphosphate (IP(3)) act as second messengers during odor responses. In previous studies, we have shown that cAMP-increasing odorants induce odor responses even after complete desensitization of the cAMP-mediated pathway. These results suggest that at least one cAMP-independent pathway contributes to the generation of odor responses. In an attempt to identify a novel second messenger, we investigated the possible role of cyclic ADP-ribose (cADPR) in olfactory transduction. Turtle olfactory receptor cells were isolated using an enzyme-free procedure and loaded with fura-2/AM. The cells responded to dialysis with cADPR with an inward current and an increase of the intracellular Ca(2+) concentration, [Ca(2+)](i). Flooding of cells with 100 microM cADPR from the pipette also induced an inward current without changes in [Ca(2+)](i) in Na(+)-containing and Ca(2+)-free Ringer solution. In an Na(+)-free and Ca(2+)-containing Ringer solution, cADPR induced only a small inward current with a concomitant increase in [Ca(2+)](i). Inward currents and increases in [Ca(2+)](i) induced by cADPR were completely inhibited by removal of both Na(+) and Ca(2+) from the outer solution. The experiments suggest that cADPR activates a cation channel at the plasma membrane, allowing inflow of Na(+) and Ca(2+) ions. The magnitudes of the inward current responses to cAMP-increasing odorants were greatly reduced by prior dialyses of a high concentration of cADPR or 8-bromo-cyclic ADP-ribose (8-Br-cADPR), an antagonist. It is possible that the cADPR-dependent pathway contributes to the generation of olfactory responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号