首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies have shown that modification of critical cysteine residues in proteins leads to the regulation of protein function. These modifications include disulfide bond formation, glutathionylation, sulfenic and sulfinic acid formation, and S-nitrosation. The biotin switch assay was developed to specifically detect protein S-nitrosation (S. R. Jaffrey et al., Nat. Cell Biol. 3:193-197; 2001). In this assay, proteins are denatured with SDS in the presence of methyl methane thiosulfonate (MMTS) to block free thiols. After acetone precipitation or Sephadex G25 separation to remove excess MMTS, HPDP-biotin and 1 mM ascorbate are added to reduce the S-nitrosothiol bonds and label the reduced thiols with biotin. The proteins are then separated by nonreducing SDS PAGE and detected using either streptavidin-HRP or anti-biotin-HRP conjugate. Our examination of this labeling scheme has revealed that the extent of labeling depends on the buffer composition and, importantly, on the choice of metal-ion chelator (DTPA vs EDTA). Unexpectedly, using purified S-nitrosated albumin, we have found that "contaminating" copper is required for the ascorbate-dependent degradation of S-nitrosothiol; this is consistent with the fact that ascorbate itself does not rapidly reduce S-nitrosothiols. Removal of copper from buffers by DTPA and other copper chelators preserves approximately 90% of the S-nitrosothiol, whereas the inclusion of copper and ascorbate completely eliminates the S-nitrosothiol in the preparation and increases the specific biotin labeling. These biotin switch experiments were confirmed using triiodide-based and copper-based reductive chemiluminescence. Additional modifications of the assay using N-ethylmaleimide for thiol blockade, ferricyanide pretreatment to stabilize S-nitrosated hemoglobin, and cyanine dye labeling instead of biotin are presented for the measurement of cellular and blood S-nitrosothiols. These results indicate that degradation of S-nitrosothiol in the standard biotin switch assay is metal-ion dependent and that experimental variability in S-nitrosothiol yields using this assay occurs secondary to the inclusion of metal-ion chelators in reagents and variable metal-ion contamination of buffers and labware. The addition of copper to ascorbate allows for a simple assay modification that dramatically increases sensitivity while maintaining specificity.  相似文献   

2.
Creatine kinase is reversibly inhibited by incubation with S-nitrosothiols. Loss of enzyme activity is associated with the depletion of 5,5'-dithiobis (2-nitrobenzoic acid)-accessible thiol groups, and is not due to nitric oxide release from RSNO. Full enzymatic activity and protein thiol content are restored by incubation of the S-nitrosothiol-modified protein with glutathione. S-nitroso-N-acetylpenicillamine, which contains a more sterically hindered S-nitroso group than S-nitrosoglutathione, predominantly modifies the protein thiol to an S-nitrosothiol via a transnitrosation reaction. In contrast, S-nitrosoglutathione modifies creatine kinase predominantly by S-thiolation. Both S-nitroso-N-acetylpenicillamine and S-nitrosoglutathione modify bovine serum albumin to an S-nitroso derivative. This indicates that S-thiolation and S-nitrosation are both relevant reactions for S-nitrosothiols, and the relative importance of these reactions in biological systems depends on both the environment of the protein thiol and on the chemical nature of the S-nitrosothiol.  相似文献   

3.
Tao L  English AM 《Biochemistry》2003,42(11):3326-3334
Mass spectrometry and UV-vis absorption results support a mechanism for NO donation by S-nitrosoglutathione (GSNO) to recombinant human brain calbindin D(28K) (rHCaBP) that requires the presence of trace copper, added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO(4). The extent of copper-catalyzed rHCaBP S-nitrosation depends on the ratio of protein to GSNO and on the reaction time, and NO-transfer is prevented when copper chelators are present. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation, and the mechanism of CuZnSOD-catalyzed S-nitrosation involves reduction of the active-site Cu(II) by a number of the five free thiols in rHCaBP, giving rise to thiyl radicals. The Cu(I)ZnSOD formed catalyzes the reductive cleavage of GSNO present in solution to give GSH and release NO. rHCaBP thiyl radicals react with NO to yield the S-nitrosoprotein. Cu(II)ZnSOD is also reduced by GSH in a concentration-dependent manner up to 5 mM but not at higher GSH concentrations. However, unlike the rHCaBP thiyl radicals, GS(*) radicals dimerize to GSSG faster than their reaction with NO. The data presented here provide a biologically relevant mechanism for protein S-nitrosation by small S-nitrosothiols. S-nitrosation is rapidly gaining recognition as a major form of protein posttranslational modification, and the efficient S-nitrosation of CaBP by CuZnSOD/GSNO is speculated to be of neurochemical importance given that CaBP and CuZnSOD are abundant in neurons.  相似文献   

4.
The reaction between NO, thiols, and oxygen has been studied in some detail in vitro due to its perceived importance in the mechanism of NO-dependent signal transduction. The formation of S-nitrosothiols and thiol disulfides from this chemistry has been suggested to be an important component of the biological chemistry of NO, and such subsequent thiol modifications may result in changes in cellular function and phenotype. In this study we have reinvestigated this reaction using both experiment and simulation and conclude that: (i) S-nitrosation through radical and nonradical pathways is occurring simultaneously, (ii) S-nitrosation through direct addition of NO to thiol does not occur to any meaningful extent, and (iii) protein hydrophobic environments do not catalyze or enhance S-nitrosation of either themselves or of glutathione. We conclude that S-nitrosation and disulfide formation in this system occur only after the initial reaction between NO and oxygen to form nitrogen dioxide, and that hydrophobic protein environments are unlikely to play any role in enhancing and targeting S-nitrosothiol formation.  相似文献   

5.
S-nitrosothiols are products of nitric oxide (NO) metabolism that have been implicated in a plethora of signalling processes. However, mechanisms of S-nitrosothiol formation in biological systems are uncertain, and no efficient protein-mediated process has been identified. Recently, we observed that ferric cytochrome c can promote S-nitrosoglutathione formation from NO and glutathione by acting as an electron acceptor under anaerobic conditions. In the present study, we show that this mechanism is also robust under oxygenated conditions, that cytochrome c can promote protein S-nitrosation via a transnitrosation reaction and that cell lysate depleted of cytochrome c exhibits a lower capacity to synthesize S-nitrosothiols. Importantly, we also demonstrate that this mechanism is functional in living cells. Lower S-nitrosothiol synthesis activity, from donor and nitric oxide synthase-generated NO, was found in cytochrome c-deficient mouse embryonic cells as compared with wild-type controls. Taken together, these data point to cytochrome c as a biological mediator of protein S-nitrosation in cells. This is the most efficient and concerted mechanism of S-nitrosothiol formation reported so far.  相似文献   

6.
The mechanisms of formation of S-nitrosothiols under physiological conditions and, in particular, of generation of SNO-Hb (the hemoglobin form in which the cysteine residues beta93 are S-nitrosated) are still not completely understood. In this paper, we investigated whether, in the presence of O2, NO* is more efficient to nitrosate protein-bound thiols such as Cysbeta93 or low molecular weight thiols such as glutathione. Our results show that when substoichiometric amounts of NO* are mixed slowly with the protein solution, NO*, O2, and possibly NO2* and/or N2O3 accumulate in hydrophobic pockets of hemoglobin. Since the environment of the cysteine residue beta93 is rather hydrophobic, these conditions facilitate SNO-Hb production. Moreover, we show that S-nitrosation mediated by reaction of NO* with the iron(III) forms of Hb or Mb is significantly more effective when it can take place intramolecularly, as in metHb. Intermolecular reactions lead to lower S-nitrosothiol yields because of the concurring hydrolysis to nitrite.  相似文献   

7.
The coupling of hemoglobin sensing of physiological oxygen gradients to stimulation of nitric oxide (NO) bioactivity is an established principle of hypoxic blood flow. One mechanism proposed to explain this oxygen-sensing-NO bioactivity linkage postulates an essential role for the conserved Cys93 residue of the hemoglobin beta-chain (betaCys93) and, specifically, for S-nitrosation of betaCys93 to form S-nitrosohemoglobin (SNO-Hb). The SNO-Hb hypothesis, which conceptually links hemoglobin and NO biology, has been debated intensely in recent years. This debate has precluded a consensus on physiological mechanisms and on assessment of the potential role of SNO-Hb in pathology. Here we describe new mouse models that exclusively express either human wild-type hemoglobin or human hemoglobin in which the betaCys93 residue is replaced with alanine to assess the role of SNO-Hb in red blood cell-mediated hypoxic vasodilation. Substitution of this residue, precluding hemoglobin S-nitrosation, did not change total red blood cell S-nitrosothiol abundance but did shift S-nitrosothiol distribution to lower molecular weight species, consistent with the loss of SNO-Hb. Loss of betaCys93 resulted in no deficits in systemic or pulmonary hemodynamics under basal conditions and, notably, did not affect isolated red blood cell-dependent hypoxic vasodilation. These results demonstrate that SNO-Hb is not essential for the physiologic coupling of erythrocyte deoxygenation with increased NO bioactivity in vivo.  相似文献   

8.
NO reactions with hemoglobin (Hb) likely play a role in blood pressure regulation. For example, NO exchange between Hb and S-nitrosoglutathione (GSNO) has been reported in vitro. Here we examine the reaction between GSNO and deoxyHb (HbFe(II)) in the presence of both Cu(I) (2,9-dimethyl-1, 10-phenanthroline (neocuproine)) and Cu(II) (diethylenetriamine-N,N,N',N",N"-pentaacetic acid) chelators using a copper-depleted Hb solution. Spectroscopic analysis of deoxyHb (HbFe(II))/GSNO incubates shows prompt formation (<5 min) of approximately 100% heme-nitrosylated Hb (HbFe(II)NO) in the absence of chelators, 46% in the presence of diethylenetriamine-N,N,N',N",N"-pentaacetic acid, and 25% in the presence of neocuproine. Negligible (<2%) HbFe(II)NO was detected when neocuproine was added to copper-depleted HbFe(II)/GSNO incubates. Thus, HbFe(II)NO formation via a mechanism involving free NO generated by Cu(I) catalysis of GSNO breakdown is proposed. GSH is a source of reducing equivalents because extensive GSSG was detected in HbFe(II)/GSNO incubates in the absence of metal chelators. No S-nitrosation of HbFe(II) was detected under any conditions. In contrast, the NO released from GSNO is directed to Cysbeta(93) of oxyHb in the absence of chelators, but only metHb formation is observed in the presence of chelators. Our findings reveal that the reactions of GSNO and Hb are controlled by copper and that metal chelators do not fully inhibit NO release from GSNO in Hb-containing solutions.  相似文献   

9.
To elucidate potential mechanisms of S-nitrosothiol formation in vivo, we studied nitrosation of GSH and albumin by nitric oxide ((*)NO), peroxynitrite, and (*)NO/O(2)(*)(-). In the presence of O(2), (*)NO yielded 20% of S-nitrosoglutathione (GSNO) at pH 7.5. Ascorbate and the spin trap 4-hydroxy-[2,2,4,4-tetramethyl-piperidine-1-oxyl] (TEMPOL) inhibited GSNO formation by 67%. Electron paramagnetic resonance spectroscopy with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) demonstrated intermediate formation of glutathionyl radicals, suggesting that GSNO formation by (*)NO/O(2) is predominantly mediated by (*)NO(2). Peroxynitrite-triggered GSNO formation (0.06% yield) was stimulated 10- and 2-fold by ascorbate and TEMPOL, respectively. Co-generation of (*)NO and O(2)(*)(-) at equal fluxes yielded less GSNO than (*)NO alone, but was 100-fold more efficient (8% yield) than peroxynitrite. Moreover, in contrast to the reaction of peroxynitrite, GSNO formation by (*)NO/O(2)(*)(-) was inhibited by ascorbate. Similar results were obtained with albumin instead of GSH. We propose that sulfhydryl compounds react with O(2)(*)(-) to initiate a chain reaction that forms radical intermediates which combine with (*)NO to yield GSNO. In RAW 264.7 macrophages, S-nitrosothiol formation by (*)NO/O(2) and (*)NO/O(2)(*)(-) occurred with relative efficiencies comparable to those in solution. Our results indicate that concerted generation of (*)NO and O(2)(*)(-) may essentially contribute to nitrosative stress in inflammatory diseases.  相似文献   

10.
S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitrosated on exposure to free NO from 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) by interaction with S-nitrosoglutathione or S-nitroso-N-acetylpenicillamine (SNAP) and by the NO derivative peroxynitrite. S-Nitrosation of protein thiols was measured directly by chemiluminescence detection. S-Nitrosoglutathione and S-nitroso-N-acetylpenicillamine led to extensive protein thiol oxidation, with about 30% of the modified protein thiols persistently S-nitrosated. In contrast, there was no protein thiol oxidation or S-nitrosation on exposure to 3,3-bis (aminoethyl)-1-hydroxy-2-oxo-1-triazene. Peroxynitrite extensively oxidized protein thiols but produced negligible amounts of S-nitrosothiols. Therefore, mitochondrial membrane protein thiols are S-nitrosated by preformed S-nitrosothiols but not by NO or by peroxynitrite. These S-nitrosated protein thiols were readily reduced by glutathione, so S-nitrosation will only persist when the mitochondrial glutathione pool is oxidized. Respiratory chain complex I was S-nitrosated by S-nitrosothiols, consistent with it being an important target for S-nitrosation during nitrosative stress. The S-nitrosation of complex I correlated with a significant loss of activity that was reversed by thiol reductants. S-Nitrosation was also associated with increased superoxide production from complex I. These findings point to a significant role for complex I S-nitrosation and consequent dysfunction during nitrosative stress in disorders such as Parkinson disease and sepsis.  相似文献   

11.
A 37,000 X g supernatant fraction prepared from fat lung homogenate demonstrated a 2- to 3-fold increase in guanylate cyclase activity after incubation at 30 degrees for 30 min (preincubation). Treatment of the supernatant fraction with Triton X-100 increased activity to approximately the same extent as preincubation, but would not increase the activity after preincubation. By chromatography on Sepharose 2B, before and after preincubation, it was demonstrated that the increase in activity was only associated with the soluble guanylate cyclase, and not the particulate enzyme. Activation by preincubation required O2. It was completely inhibited by thiols such as 2-mercaptoethanol, and by bovine serum albumin, KCN, and sodium diethyldithiocarbamate. These inhibitors suggested a copper requirement for activation, and this was confirmed by demonstrating that 20 to 60 muM CuCl2 could relieve the inhibition by 0.1 mM sodium diethyldithiocarbamate. 2-Mercaptoethanol inhibition could also be reversed by removal of the thiol on a Sephadex G-25 column, however, this treatment partially activated the enzyme. Addition of 2-mercaptoethanol to a preincubated preparation would not reverse the activation. H2O2 was found to activate guanylate cyclase, either by its generation in the lung supernatant with glucose oxidase and glucose, or by its addition to a preparation in which the catalase was inhibited with KCN. KCN or bovine serum albumin was able to partially inhibit activation by glucose oxidase plus glucose, however, larger amounts of glucose oxidase could overcome that inhibition, indicating a catalytic role for Cu2+ at low H2O2 concentrations. No direct evidence for H2O2 formation during preincubation could be found, however, indirect evidence was obtained by the spectrophotometric detection of choleglobin formation from hemoglobin present in the lung supernatant fluid. The H2O2 is believed to result from the reaction of oxyhemoglobin with ascorbate.  相似文献   

12.
The autooxidation of cysteine and homocysteine to their disulfide forms was determined by measuring the time course of thiol groups disappearance. We found the oxidative chemistry of cysteine and homocysteine to be quite different. In the absence of added Cu(II), cysteine autooxidized at a slower rate than homocysteine, though in its presence cysteine oxidation was much faster, homocysteine being found to be a poor responder to copper catalysis. Albumin speeded up the spontaneous oxidation of both aminothiols, the reaction being faster with cysteine than with homocysteine. The copper content of different albumins was found to be highly variable, ranging from 12.75 to 0.64 microg Cu(II)/g albumin. We propose that copper bound to albumin possesses redox cycling activity to perform cysteine oxidation since: (i) copper elimination by copper chelators markedly reduces oxidation; and (ii) a positive correlation exists between the albumin copper content and the oxidation reaction rate.  相似文献   

13.
Although serum albumin has an established function as a transport protein, evidence is emerging that serum albumin may also have a role as a molecular chaperone. Using established techniques to characterize chaperone interactions, this study demonstrates that bovine serum albumin: 1) preferentially binds stressed over unstressed client proteins; 2) forms stable, soluble, high molecular weight complexes with stressed client proteins; 3) reduces the aggregation of client proteins when it is present at physiological levels; and 4) inhibits amyloid formation by both WT and L55P transthyretin. Although the antiaggregatory effect of serum albumin is maintained in the presence of physiological levels of Ca(2+) and Cu(2+), the presence of free fatty acids significantly alters this activity: stabilizing serum albumin at normal levels but diminishing chaperone-like activity at high concentrations. Moreover, here it is shown that depletion of albumin from human plasma leads to a significant increase in aggregation under physiologically relevant heat and shear stresses. This study demonstrates that serum albumin possesses chaperone-like properties and that this activity is maintained under a number of physiologically relevant conditions.  相似文献   

14.
HIF-1 alpha protein as a target for S-nitrosation   总被引:6,自引:0,他引:6  
Sumbayev VV  Budde A  Zhou J  Brüne B 《FEBS letters》2003,535(1-3):106-112
Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a master regulator to sense decreased oxygen partial pressure. HIF-1 alpha stability regulation initiates a complex biological response that allows cells to act appropriately to meet patho-physiological situations of decreased oxygen availability. Recently, nitric oxide emerged as a messenger with the ability to stabilize HIF-1 alpha and to transactivate HIF-1 under normoxia. Considering that reactive nitrogen species are recognized for post-translation protein modifications, among others S-nitrosation, we asked whether HIF-1 alpha is a target for S-nitrosation. In vitro NO+ donating NO donors such as GSNO and SNAP provoked massive S-nitrosation of purified HIF-1 alpha. All 15 free thiol groups found in human HIF-1 alpha are subjected to S-nitrosation. Thiol modification is not shared by spermine-NONOate, a NO radical donating compound. However, spermine-NONOate in the presence of O(2)(-), generated by xanthine/xanthine oxidase, regained S-nitrosation, most likely via formation of a N(2)O(3)-like species. In vitro, S-nitrosation of HIF-1 alpha was attenuated by the addition of GSH or ascorbate. In RCC4 and HEK293 cells GSNO or SNAP reproduced S-nitrosation of HIF-1 alpha, however with a significantly reduced potency that amounted to modification of three to four thiols, only. Importantly, endogenous formation of NO in RCC4 cells via inducible NO synthase elicited S-nitrosation of HIF-1 alpha that was sensitive to inhibition of inducible NO synthase activity with N-monomethyl-L-arginine. NO-stabilized HIF-1 alpha was susceptible to the addition of N-acetyl-cysteine that destabilized HIF-1 alpha in close correlation to the disappearance of S-nitrosated HIF-1 alpha. In conclusion, HIF-1 alpha is a target for S-nitrosation by exogenously and endogenously produced NO.  相似文献   

15.
Oxidative deamination by hydrogen peroxide in the presence of metals   总被引:1,自引:0,他引:1  
Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H 2 O 2 /Cu 2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O 2 on the oxidative deamination of benzylamine by H 2 O 2 . The formation of benzaldehyde was the greatest with Cu 2+ , and catalysis occurred with Co 2+ , VO 2+ , and Fe 3+ . The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O 2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O 2 /Cu 2+ and hemoglobin/H 2 O 2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H 2 O 2 /Cu 2+ system is discussed.  相似文献   

16.
The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO(2)/N(2)O(3) in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N(2)O(3) and S-nitrosothiols.  相似文献   

17.
Aging and age-related diseases are associated with the production of reactive oxygen species which modify lipids, proteins and DNA. Here we hypothesized the glyco- and lipoxidation product N(epsilon)-(carboxymethyl)lysine (CML) in proteins should bind divalent and redox active transition metal binding. CML-rich poly-L-lysine and bovine serum albumin (BSA) were chemically prepared and found to bind non-dialyzable Cu(2+), Zn(2+) and Ca(2+). CML-BSA-copper complexes oxidized ascorbate and depolymerized protein in the presence of H(2)O(2). CML-rich tail tendons implanted for 25 days into the peritoneal cavity of diabetic rats had a 150% increase in copper content and oxidized ascorbate three times faster than controls. CML-rich proteins immunoprecipitated from serum of uremic patients oxidized four times more ascorbate than control and generated spin adducts of DMPO in the presence of H(2)O(2). The chelator DTPA suppressed ascorbate oxidation thereby implicating transition metals in the process. In aging and disease, CML accumulation may result in a deleterious vicious cycle since CML formation itself is catalyzed by lipoxidation and glycoxidation.  相似文献   

18.
In the vasculature, nitrosothiols derived from the nitric oxide (NO)-mediated S-nitrosation of thiols play an important role in the transport, storage, and metabolism of NO. The present study was designed to examine the reactions that promote the decomposition, formation, and distribution of extracellular nitrosothiols in the circulation. The disappearance of these species in plasma and whole blood was examined using a high-performance liquid chromatography method to separate low- and high-molecular weight nitrosothiols. We found that incubation of S-nitrosocysteine (CySNO) or S-nitrosoglutathione (GSNO) with human plasma resulted in a rapid decomposition of these nitrosothiols such that <10% of the initial concentration was recovered after 10-15 min. Neither metal chelators (DTPA, neocuproine), nor zinc chloride (glutathione peroxidase inhibitor), acivicin (gamma-glutamyl transpeptidase inhibitor), or allopurinol (xanthine oxidase inhibitor) inhibited the decomposition of GSNO. With both CySNO and GSNO virtually all NO was recovered as S-nitrosoalbumin (AlbSNO), suggesting the involvement of a direct transnitrosation reaction. Electrophilic attack of the albumin-associated thiols by reactive nitrogen oxides formed from the interaction of NO with O(2) was ruled out because one would have expected 50% yield of AlbSNO. Similar results were obtained in whole blood. The amount of S-nitrosohemoglobin recovered in the presence of 10 microM GSNO or CySNO was less than 100 nM taking into consideration the detection limit of the assay used. Our results suggest that serum albumin may act as a sink for low-molecular-weight nitrosothiols and as a modulator of NO(+) transfer between the vascular wall and intraerythrocytic hemoglobin.  相似文献   

19.
Although different routes for the S-nitrosation of cysteinyl residues have been proposed, the main in vivo pathway is unknown. We recently demonstrated that direct (as opposed to autoxidation-mediated) aerobic nitrosation of glutathione is surprisingly efficient, especially in the presence of Mg2+. In the present study we investigated this reaction in greater detail. From the rates of NO decay and the yields of nitrosoglutathione (GSNO) we estimated values for the apparent rate constants of 8.9±0.4 and 0.55±0.06 M−1 s−1 in the presence and absence of Mg2+. The maximum yield of GSNO was close to 100% in the presence of Mg2+ but only about half as high in its absence. From this observation we conclude that, in the absence of Mg2+, nitrosation starts by formation of a complex between NO and O2, which then reacts with the thiol. Omission of superoxide dismutase (SOD) reduced by half the GSNO yield in the absence of Mg2+, demonstrating O2 formation. The reaction in the presence of Mg2+ seems to involve formation of a Mg2+•glutathione (GSH) complex. SOD did not affect Mg2+-stimulated nitrosation, suggesting that no O2 is formed in that reaction. Replacing GSH with other thiols revealed that reaction rates increased with the pKa of the thiol, suggesting that the nucleophilicity of the thiol is crucial for the reaction, but that the thiol need not be deprotonated. We propose that in cells Mg2+-stimulated NO/O2-induced nitrosothiol formation may be a physiologically relevant reaction.  相似文献   

20.
We investigated the complex formation between Cu(II) and human serum albumin (HSA) through a biuret reaction by use of capillary electrophoretic system incorporating an ultra-violet absorption (UV) and chemiluminescence (CL) dual detector. Cu(II)-tartrate complex and Cu(II)-human serum albumin complex were detected by UV detection (282 nm) with on-capillary, followed by CL detection (luminol-hydrogen peroxide CL reaction) with end-capillary. We examined the effects of the reaction time and temperature on the UV and CL responses. On the basis of the obtained results we considered the Cu(II)-human serum albumin complex formation processes and its catalytic activity for the CL reaction. The system easily, rapidly, and simultaneously produced useful information concerning the complex formation of Cu(II) and human serum albumin due to the presence of the both detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号