首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Snoke MS  Promislow DE 《Heredity》2003,91(6):546-556
Quantitative genetic models of aging predict that additive genetic variance for fitness components should increase with age. However, recent studies have found that at very late ages, the genetic variance components decline. This decline may be due to an age-related drop in reproductive effort. If genetic variance in reproductive effort affects the genetic variance in mortality, the decline in reproductive effort at late ages should lead to a decrease in the genetic variance in mortality. To test this, we carried out a large-scale quantitative genetic analysis of age-specific mortality and fertility in virgin male Drosophila melanogaster. As in earlier studies, we found that the additive variance for age-specific mortality and fertility declined at late ages. Also, recent theoretical developments provide new predictions to distinguish between the mutation accumulation (MA) and antagonistic pleiotropy (AP) models of senescence. The deleterious effects of inbreeding are expected to increase with age under MA, but not under AP. This prediction was supported for both age-specific mortality and male fertility. Under AP, the ratio of dominance to additive variance is expected to decline with age. This predicition, too, was supported by the data analyzed here. Taken together, these analyses provide support for both the models playing a role in the aging process. We argue that the time has come to move beyond a simple comparison of these genetic models, and to think more deeply about the evolutionary causes and consequences of senescence.  相似文献   

2.
Karyotype evolution in cell lines of Drosophila melanogaster   总被引:2,自引:1,他引:1  
The chromosomal changes occurred in two independent cell lines (GM2 and GM3) of Drosophila melanogaster maintained in medium supplemented with serum and in serum-free medium were compared. In both culture conditions and in both lines a chromosomal evolution was revealed. Structural and numerical variations were analysed. The breaks giving rise to rearrangements were at heterochromatic level. Moreover, a tetraploidisation followed by loss of chromosomes or of portions of chromosomes recalls an analogous cycle observed in human cells.This work was supported by a grant of the Consiglio Nazionale delle Ricerche, Roma.  相似文献   

3.
Lesser KJ  Paiusi IC  Leips J 《Aging cell》2006,5(4):293-295
Immunosenescence, the age‐related decline in immune response, is a well‐known consequence of aging. To date, most studies of age‐related changes in immune response focused on the cellular and physiological bases of this decline; we have virtually no understanding of the genetic basis of age‐related changes in the immune system or if indeed such control exists. We used 25 chromosome substitution lines of Drosophila melanogaster derived from a natural population to address three questions: (i) How is the function of the innate immune system influenced by age? (ii) Is there a genetic basis for phenotypic variation in immune response at different ages? (iii) Is there a genetic basis for differences in the way that age influences the immune function? Virgin females from each line were assayed for immune response using clearance of infection with Escherichia coli at 1 and 4 weeks of age. We found significant genetic variation among lines in immune response at each age. Unexpectedly, when averaged across all lines, the immune response actually improved with age. However, there was significant variation in the effect of age on immune response with 11 lines showing improvement, nine lines showing no change and five exhibiting a decline with age. There was no genetic correlation of immune response across ages suggesting that different loci contribute to variation in immune response at each age. The genetic component of the variation in immune response increased with age, a pattern predicted by the mutation accumulation model of senescence. However, this increase in variation resulted in part from the improvement of the immune response in some lines with age. Thus the observed changes in genetic variation in immune function with age are not entirely explained by the mutation accumulation model.  相似文献   

4.
The use of model organisms, such as Drosophila melanogaster, provides a powerful method for studying mechanisms of aging. Here we report on a large set of recombinant inbred (RI) D. melanogaster lines that exhibit approximately a fivefold range of average adult longevities. Understanding the factors responsible for the differences in longevity, particularly the characteristics of the longest-lived lines, can provide fundamental insights into the mechanistic correlates of aging. In ectothermic organisms, longevity is often inversely correlated with metabolic rate, suggesting the a priori hypothesis that long-lived lines will have low resting metabolic rates. We conducted approximately 6000 measurements of CO2 production in individual male flies aged 5, 16, 29, and 47 days postemergence and simultaneously measured the weight of individual flies and life spans in populations of each line. Even though there was a wide range of longevities, there was no evidence of an inverse relationship between the variables. The increased longevity of long-lived lines is not mediated through reduction of metabolic activity. In Drosophila, it is possible to both maintain a normal metabolic rate and achieve long life. These results are evaluated in the context of 100 years of research on the relationship between metabolic rate and life span.  相似文献   

5.
Using parametric models that describe the increase in mortality rates with age, we demonstrate that environmentally induced heterogeneity among genetically identical individuals is sufficient to generate biased estimates of age-specific genetic variance. Although the magnitude of the bias may change with age, one general trend emerges: the true genetic variance at the oldest ages is likely to be dramatically underestimated. Our results are robust to different manifestations of heterogeneity and suggest that such a bias is a general feature of these models. We note that age-dependent estimates of genetic variance for characters that are correlated with mortality (either genetically or environmentally) can be expected to be similarly affected. The results are independent of sample size and suggest that the bias may be more widespread in the literature than is currently appreciated. Our results are discussed with reference to existing data on mortality variance in Drosophila melanogaster.  相似文献   

6.
Using lines selected for long life by Luckinbill and his co-workers, we screened two selected and two control lines for allelic frequency differences at 1200 randomly chosen RAPD marker loci. Twenty-three marker loci showed frequency differences in excess of 80%, and five were greater than 90%. Age-specific effects of the five most differentiated loci were estimated by collecting complete survival data in segregating backcross populations. Alleles at four of the five marker loci were associated with significant extension of life span in males, while two marker loci had significant effects in females. Eighty percent of the total selection response in males can be explained by the identified QTL's, under the assumption of additivity. The N14+ marker allele accounted for a 12-day life span extension in males, but had little effect in females. Both sex-limited and sex-shared effects were observed. Analysis of age-specific mortality rates suggests that life span extension occurs by a combination of genetic factors that moderate both the level of mortality and the rate at which mortality increases with age. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
To investigate the genetic basis of the seasonal fluctuations in resistance to three organophosphates, observed within a natural population of Drosophila melanogaster (Meigen), we compared the intrinsic rate of increase, generation time and net reproduction rate among chromosome substitution lines derived from a resistant and a susceptible line, obtained from this natural population. There was significant variation among substituted lines; lines possessing the third chromosome from the resistant line, which confers resistance to the three organophosphates, generally showed lower mean values of these fitness measures. Chromosomal analyses also indicated significant negative contributions of the third chromosome from the resistant line. However, significant positive contributions of the interactions among chromosomes from the resistant line to these fitness measures were also detected. We further conducted a local stability analysis, in which each chromosome-substituted line was assumed to be introduced at a low frequency into the initial susceptible population. It was demonstrated that the resistance factor(s) on the third chromosome tend to decrease in their frequency under both density-independent and juvenile density-regulated conditions. Based on these results, a possible explanation for the seasonal fluctuations in resistance to the three organophosphates observed in the natural population was proposed.  相似文献   

9.
The proximate and evolutionary causes of the levelling of mortality rates at late ages, observed in several species, remain obscure. To investigate the causes of mortality levelling late in life in Drosophila melanogaster, we examined the effect of reproduction on mortality patterns, by conducting population cage experiments with a total of more than 45,000 individuals. Several different genotypes of reproducing and non-reproducing males from F(1) crosses among isogenic lines were studied. Our results suggest that significant mortality levelling can occur even in non-reproducing males, but that reproduction also significantly affects mortality patterns. The results show that mortality levelling is strongly affected by the Gompertz initial mortality rate and exponential rate of increase parameters, probably through the effects of heterogeneity in mortality risks.  相似文献   

10.
11.
The genetic analysis of meiosis in female Drosophila melanogaster.   总被引:13,自引:0,他引:13  
The three major features of meiosis are first synapsis, then exchange, and finally, disjunction of homologous chromosomes; these phenomena occur before pachytene, during pachytene, and after pachytene respectively. The effects of meiotic mutants, or other perturbations, either endogenous or exogenous, on the meiotic process may be assigned tentatively to one of these intervals, based on the earliest discernible abnormality. Thus mutants exhibiting abnormal disjunction and normal exchange affect post-pachytene functions; mutants exhibiting abnormal disjunction and exchange but with ultrastructurally normal appearing synaptonemal complex affect pachytene functions; and mutants with abnormal disjunction, exchange, and synaptonemal complex affect prepachytene functions. This rationale is applied to the temporal seriation of effects of meiotic mutants and chromosomal abnormalities on the meiotic programme.  相似文献   

12.
Summary Reproductive capacities of tropical and temperate populations of D. melanogaster were compared using three complementary techniques: (1) measure of egg production by females grown in the laboratory under uncrowded conditions and provided as adults with abundant food; (2) study of egg production of flies of unknown ages, collected in nature and then kept in similar conditions; and (3) analysis of ovarian activity of wild females dissected just after their capture.Tropical populations showed a lower fecundity in the laboratory and this was also observed in laboratory reared adults. On the average, flies also appeared to be older in the tropics than in temperate countries. These data, together with ecological observations showing that tropical populations live in a more predictable and stable environment, suggest that temperature populations are r-selected, while tropical ones are K-selected. The study of ovarian activity of wild females failed however to confirm this expectation. Tropical flies, which have a lower genetic fecundity, generally appeared to produce more propagules than did temperate flies. Such a contradiction shows how the ideas of r- and K-selection are difficult to apply to natural populations of Drosophila. Population density and interindividual competition are probably not the main selective forces in nature. Attention must also be paid to the necessity of exploring the environment to find resources, to the role of predation and parasitism, and to the occurrence in temperate countries of seasonal fluctuations with different selective pressures on successive generations.  相似文献   

13.
The study of the early stages of speciation can benefit from examination of differences between populations of known history that have been separated for a short time, such as a few thousands of generations. We asked whether two lines of Drosophila melanogaster that were isolated more than 40 years ago have evolved differences in life-history characters, or have begun to evolve behavioural or postzygotic isolation. One line, which is resistant to DDT, showed lower egg production and a shorter lifespan than a susceptible line. These differences are not a pleiotropic effect of resistance because they are not attributable to the chromosome that contains the resistance factors. The two lines have begun to become behaviourally isolated. Again, the isolation is not attributable to genes on the chromosome that contains resistance factors. The lines show only prezygotic isolation; there is no evidence of reduced fitness of F1 or F2 hybrids. These lines and others like them, should be excellent subjects for analyses of genetic changes that could lead to speciation.  相似文献   

14.
Vermeulen CJ  Bijlsma R 《Genetics》2004,167(3):1241-1248
The specific genetic basis of inbreeding depression is poorly understood. To address this question, two conditionally expressed lethal effects that were found to cause line-specific life span reductions in two separate inbred lines of Drosophila melanogaster were characterized phenotypically and genetically in terms of whether the accelerated mortality effects are dominant or recessive. The mortality effect in one line (I4) is potentially a temperature-sensitive semilethal that expresses in adult males only and is partially dominant. The other line (I10) responds as one would expect for a recessive lethal. It requires a cold shock for expression and is cold sensitive. Flies exhibiting this lethal condition responded as pupae and freshly eclosed imagoes. The effect is recessive in both males and females. The expression of the lethal effects in both lines is highly dependent upon environmental conditions. These results will serve as a basis for more detailed and mechanistic genetic research on inbreeding depression and are relevant to sex- and environment-specific effects on life span observed in quantitative trait loci studies using inbred lines.  相似文献   

15.
16.
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution.  相似文献   

17.
Akashi H  Ko WY  Piao S  John A  Goel P  Lin CF  Vitins AP 《Genetics》2006,172(3):1711-1726
Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.  相似文献   

18.
Leips J  Gilligan P  Mackay TF 《Genetics》2006,172(3):1595-1605
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.  相似文献   

19.
The art and design of genetic screens: Drosophila melanogaster   总被引:1,自引:0,他引:1  
The success of Drosophila melanogaster as a model organism is largely due to the power of forward genetic screens to identify the genes that are involved in a biological process. Traditional screens, such as the Nobel-prize-winning screen for embryonic-patterning mutants, can only identify the earliest phenotype of a mutation. This review describes the ingenious approaches that have been devised to circumvent this problem: modifier screens, for example, have been invaluable for elucidating signal-transduction pathways, whereas clonal screens now make it possible to screen for almost any phenotype in any cell at any stage of development.  相似文献   

20.
Evolution of late-life mortality in Drosophila melanogaster   总被引:2,自引:0,他引:2  
Abstract.— Aging appears to cease at late ages, when mortality rates roughly plateau in large-scale demographic studies. This anomalous plateau in late-life mortality has been explained theoretically in two ways: (1) as a strictly demographic result of heterogeneity in life-long robustness between individuals within cohorts, and (2) as an evolutionary result of the plateau in the force of natural selection after the end of reproduction. Here we test the latter theory using cohorts of Drosophila melanogaster cultured with different ages of reproduction for many generations. We show in two independent comparisons that populations that evolve with early truncation of reproduction exhibit earlier onset of mortality-rate plateaus, in conformity with evolutionary theory. In addition, we test two population genetic mechanisms that may be involved in the evolution of late-life mortality: mutation accumulation and antagonistic pleiotropy. We test mutation accumulation by crossing genetically divergent, yet demographically identical, populations, testing for hybrid vigor between the hybrid and nonhybrid parental populations. We found no difference between the hybrid and nonhybrid populations in late-life mortality rates, a result that does not support mutation accumulation as a genetic mechanism for late-life mortality, assuming mutations act recessively. Finally, we test antagonistic pleiotropy by returning replicate populations to a much earlier age of last reproduction for a short evolutionary time, testing for a rapid indirect response of late-life mortality rates. The positive results from this test support antagonistic pleiotropy as a genetic mechanism for the evolution of late-life mortality. Together these experiments comprise the first corroborations of the evolutionary theory of late-life mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号