首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation and analysis of insertional mutations affecting mouse embryogenesis provides a powerful method to identify new genes that function in early development. In this paper, we describe an insertional mutation that interferes with postimplantation mouse development beginning at the time of gastrulation. Embryos homozygous for the H beta 58 transgenic insertion developed normally through the early postimplantation, egg cylinder stage (day 6.5 of development). At the primitive streak stage (day 7.5), however, they began to display characteristic abnormalities, including a retardation in the growth of the embryonic ectoderm (the earliest identifiable defect), and in some cases abnormalities of the amnion and chorion. Homozygotes continued to develop for 2-3 more days, reaching the size of a normal 8.5 day embryo, and formed tissues representative of all three germ layers, including several differentiated cell types. The site of insertion was mapped, by a combination of cytogenetic and genetic methods, to chromosome 10, and it appeared to define a new genetic locus. The inserted transgene provided a probe to clone and characterize the mutant locus, as well as the corresponding wild-type locus. In addition to an insertion of 10-20 copies of the transgene, the mutant locus contained a deletion of 2-3 kb of DNA found at the wild-type locus, and possibly an insertion of mouse repetitive DNA. However, genomic sequences on both sides of the insertion site remained co-linear in the wild-type and mutant genomes, and no chromosomal abnormalities could be detected. Five single copy DNA probes spanning the insertion site were tested for their ability to hybridize to RNA from 8.5 day embryos; one of the probes (located within the region deleted from the mutant chromosome) hybridized to a 2.7 kb mRNA encoded at the H beta 58 locus, thus identifying a gene whose disruption appears to be responsible for the mutant phenotype.  相似文献   

2.
Several genomic clones were isolated from a Drosophila library screened with cDNA prepared from abundant adult female mRNA. Cytoplasmic dot hybridizations have shown that the genes in all of these clones are expressed only in posteclosion (stages 8-14) follicles. One set of overlapping clones (lambda 20, lambda 28, and lambda 30) was localized by in situ hybridization to 66D, a previously described locus for chorion genes. Restriction mapping demonstrated that these clones contained chorion genes which had been isolated previously. Another clone, lambda 7, was mapped to chromosomal region 26A. This clone carries genes that hybridized to mRNA species similar or identical in size to the known chorion genes encompassed by lambda 28. Furthermore, one of these genes shows homology to the 66D chorion locus, apparently with the s18-1 gene. R-loop and S1-nuclease mapping indicated that lambda 7 contains two genes of 700-800 base pairs in length. Dot hybridization of cytoplasmic RNA from egg chambers demonstrated that these genes are expressed predominantly during stages 9 + 10, the time of vitelline membrane synthesis. Analysis of DNA extracted from embryos and various female tissues by dot hybridization showed that lambda 7 sequences are not amplified in the mature ovary. These results suggest that the two genes carried by lambda 7 and derived from region 26A may code for protein components of the vitelline membrane. In addition it appears that some evolutionary relatedness exists between one of these genes and a member of the chorion multigene family.  相似文献   

3.
The GrB mutation has a profound pleiotropic effect, leading in the homozygous state to the absence or extreme reduction of a substantial number of chorion proteins. The effect shows developmental specificity: most of the proteins normally synthesized beginning with stage III of choriogenesis or later, but possibly none of these normally beginning with stage II, are eliminated in the mutant. More subtle quantitative effects on certain other proteins are also observed, including prolongation of synthesis of some proteins which normally terminate at stage VIII. The proteins eliminated in the mutant are present in the heterozygote at intermediate levels, quantitatively close to those in the wild-type. The differences in chorion protein composition result from correspondingly altered protein synthesis rather than from post-translational degradation or modification. The missing proteins also fall to be synthesized in vitro when total RNA from mutant follicles is translated in the wheat germ system. It appears that as a consequence of the mutation, a set of mRNAs fails to be synthesized or accumulated. These results are consistent with the possibility that GrB is a regulatory mutation, or a deletion eliminating multiple chorion genes, clustered predominantly according to the developmental period of their expression.  相似文献   

4.
Cloning the Arabidopsis GA1 Locus by Genomic Subtraction   总被引:21,自引:7,他引:14       下载免费PDF全文
Arabidopsis thaliana ga1 mutants are gibberellin-responsive dwarfs. We used the genomic subtraction technique to clone DNA sequences that are present in wild-type Arabidopsis (ecotype Landsberg erecta, Ler) but are missing in a presumptive ga1 deletion mutant, ga1-3. The cloned sequences correspond to a 5.0-kb deletion in the ga1-3 genome. Three lines of evidence indicated that the 5.0-kb deletion in the ga1-3 mutant is located at the GA1 locus. First, restriction fragment length polymorphism mapping showed that DNA sequences within the 5.0-kb deletion map to the GA1 locus. Second, cosmid clones that contain wild-type DNA inserts spanning the deletion in ga1-3 complemented the dwarf phenotype when integrated into the ga1-3 genome by Agrobacterium tumefaciens-mediated transformation. Third, we identified molecular lesions in four additional ga1 alleles within the 5.0-kb region deleted in mutant ga1-3. One of these lesions is a large insertion or inversion located within the most distal intron encoded by the GA1 locus. The three other lesions are all single base changes located within the two most distal exons. RNA gel blot analysis indicated that the GA1 locus encodes a 2.8-kb mRNA. We calculated a recombination rate of 10-5 cM per nucleotide for the GA1 region of the Arabidopsis genome.  相似文献   

5.
The Streptomyces glaucescens genome frequently undergoes gross genomic rearrangement events which result in the deletion of extremely large segments of chromosomal DNA. The structure and origin of the DNA forming the novel junctions arising from five of these deletion events are described. Only one junction proved to be the result of a relatively simple event; the remainder were more complex, with one involving DNA which originated from at least five distinct loci. In three of the investigated cases, DNA sequences present in the junctions appeared to have resulted from the duplication of previously unique sequences, suggesting that duplication of chromosomal segments may be an important factor in genetic instability. The nucleotide sequences surrounding these junctions and their respective wild-type termini were determined.  相似文献   

6.
7.
The pigmentation (Pgm+) phenotype of Yersinia pestis encompasses a variety of different physiological traits, all of which are missing in Pgm- mutants. We have previously shown that loss of the Pgm+ phenotype is accompanied by the spontaneous deletion of at least 45 kb of chromosomal DNA, referred to as the pgm locus. Using chromosomal walking, we have now mapped the full extent of the pgm locus in Y. pestis strain KIM6+. Our results indicate that the locus spans 102 kb of DNA which is absent in the spontaneous Pgm- mutant, KIM6. Yersinia pseudotuberculosis PB1/0 contains sequences homologous to the entire pgm locus while only part of this region hybridized to Yersinia enterocolitica WA-LOX DNA. Restriction enzyme mapping and hybridization studies revealed the presence of a repetitive element at both ends of the pgm locus and in multiple copies elsewhere in the Y. pestis genome. This element may be responsible for generating the deletion.  相似文献   

8.
To study the molecular basis of the GrB mutation, which prevents the synthesis of many stage-specific chorion proteins, a cDNA library has been constructed from wild-type chorion mRNA of Bombyx mori strain 703. By differential screening of the library with +/+ and B/B mRNAs, under appropriately stringent conditions to minimize cross hybridizations of related chorion sequences, we have selected several distinct clones corresponding to RNA sequences which are affected by the mutation (that is, are represented only in +/+ mRNA) or are unaffected (that is, are represented in both +/+ and B/B mRNAs). We show by Southern analysis that, whereas unaffected gene sequences are represented in both +/+ and B/B chromosomal DNA, affected sequences have been deleted from B/B DNA. The organization and regulation of developmental stage-specific chorion genes are discussed in light of these findings and the known effects of GrB on stage-specific protein synthesis.  相似文献   

9.
10.
11.
12.
The human insulin resistance syndromes—type 2 diabetes, obesity, combined hyperlipidemia, and essential hypertension—are genetically complex disorders whose molecular basis is largely unknown. The spontaneously hypertensive rate (SHR) is a model of these human syndromes. In the SHR/NCrlBR strain, a chromosomal deletion event that occurred at the Cd36 locus during the evolution of this SHR strain has been proposed as a cause of defective insulin action and fatty acid metabolism. In this study, three copies of the Cd36 gene, one transcribed copy and two pseudogenes, were identified in normal rat strains, but only a single gene in SHR/NCrlBR. Analysis of SHR genomic sequence localized the chromosomal deletion event between intron 4 of the normally transcribed copy of the gene and intron 4 of the second pseudogene. The deletion led to the creation of a single chimeric Cd36 gene in SHR/NCrlBR. The boundaries of the recombination/deletion junction identified within intron 4 were surrounded by long interspersed nuclear elements (LINEs) and DNA topoisomerase I recognition sequences. An 8-bp deletion at the intron 14/exon 15 boundary of the second pseudogene abolishes the putative splice acceptor site and is the cause of an aberrant 3′ UTR previously observed in SHR/NCrlBR. We conclude that in SHR/NCrlBR, the complex trait of insulin resistance and defective fatty acid metabolism is caused by Cd36 deficiency, resulting from a chromosomal deletion caused by unequal recombination. This demonstrates that chromosomal deletions caused by unequal recombination can be a cause of quantitative or complex mammalian phenotypes. Received: 7 September 2001 / Accepted: 3 October 2001  相似文献   

13.
The temperature-dependent absorption of sufficient exogenous hemin or Congo red to form pigmented colonies of Yersinia pestis has been termed the pigmentation phenotype (Pgm+). Spontaneous mutation to a Pgm- phenotype results in the loss of a number of divergent physiological characteristics, including the ability to store hemin and to bind Congo red at 26 degrees C. In this study, we generated and isolated transposon insertion mutants that are hemin storage negative (Hms-) and therefore unable to form pigmented colonies. These mutations are due to single mini-kan insertions within a 19.5-kilobase (kb) SalI fragment of chromosomal DNA. Restriction site analysis of eight mutants identified a minimum of six potentially different insertion sites spanning an approximately 10-kb hemin storage (hms) locus. The 19.5-kb SalI fragment (containing approximately 18 kb of Y. pestis DNA and the mini-kan insert) was cloned from one of these mutants, KIM6-2012. By using this cloned fragment as a DNA probe, the mechanism of spontaneous mutation to a Pgm- phenotype was identified as a massive deletion event. The deletion spans at least 18 kb of genomic DNA in spontaneous Pgm- mutants from nine separate strains of Y. pestis. DNA adjacent to the mini-kan insert was used to identify a clone containing a wild-type hms locus. A spontaneous Pgm- mutant of Y pestis KIM containing this clone exhibits an Hms+ phenotype. The hms::mini-kan mutations and cloned wild-type hms locus generated in this study will greatly aid in identifying the function of hemin storage in Y. pestis.  相似文献   

14.
15.
We describe here a protocol for obtaining clones containing sequences present in low copy-number from genomic DNA where moderately and highly repeated sequences predominate. Specific chromosomal regions can be targeted by using deletion or addition line material. We have used this protocol to identify a sequence which has been deleted in both the tetraploid and hexaploid wheat mutants for the homoeologous chromosome pairing locus.  相似文献   

16.
French Canadians living in eastern Quebec are carriers of a severe type of Tay-Sachs disease, known as the classic form, 10 times more often than the general population. The alpha-chain of beta-hexosaminidase A, a lysosomal enzyme composed of two chains (alpha, beta), bears the mutation in this inherited disorder. We previously reported that the 5' end of the alpha-chain gene was deleted in two such patients (Myerowitz, R., and Hogikyan, N.D. (1986) Science, 232, 1646-1648). The present study reports the size, precise location, and environment of the deletion. A clone encompassing the deletion was isolated from a genomic library constructed in lambda EMBL3 with DNA from a patient's fibroblasts. Comparison of the restriction maps of the clone with that of the normal gene (Proia, R.L., and Soravia, E. (1987) J. Biol. Chem. 262, 5677-5681) showed that the deletion was 7.6 kilobases long and included part of intron 1, all of exon 1 and extended 2000 base pairs upstream past the putative promotor region of the alpha-chain gene. These data are consistent with the inability to detect mRNA and immunoprecipitable alpha-chain protein in this mutant. Sequence analysis of the deletion junction in the mutant and corresponding regions of the normal gene demonstrated the presence of similarly oriented Alu sequences at the 5' and 3' deletion boundaries. The data are in accord with the possibility that the deletion may have arisen during homologous recombination from unequal crossing over between Alu sequences.  相似文献   

17.
We have recovered overlapping clones that represent in the aggregate a contiguous segment of chromosomal DNA 270 kb in length, or probably one third of the chorion locus of Bombyx mori. Approximately 70 genes have been identified, the majority of which are arranged in coordinately expressed pairs. The nonidentical genes expressed in the late period of choriogenesis are clustered within a single, 130 kb region, which is flanked by regions containing genes that are active during the middle developmental period. The late genes encode two families of high-cysteine proteins; the evolutionarily persistent clustering of these families contrasts sharply with the extensive sequence diversification of the structural genes and their flanking DNA elements. We discuss the possible regulatory significance of the clustered arrangement, as well as certain features of multigene family evolution.  相似文献   

18.
Summary Twenty-nine deletion breakpoints were mapped in 220 kb of the DXS164 locus relative to potential exons of the Duchenne and Becker muscular dystrophy gene. Four deletion junction fragments were isolated to acquire outlying Xp21 loci on both the terminal and centromere side of the DXS164 locus. The junction loci were used for chromosome walking, searches for DNA polymorphisms, and mapping against deletion and translocation breakpoints. Forty-four unrelated deletions were analyzed using the junction loci as hybridization probes to map the endpoints between cloned Xp21 loci. DNA polymorphisms from the DXS164 and junction loci were used to follow the segregation of a mutation in a family that represents a recombinant. Both the physical and genetic data point to a very large size for this X-linked muscular dystrophy locus.  相似文献   

19.
Repetitive DNA elements frequently are precursors to chromosomal deletions in prokaryotes and lower eukaryotes. However, little is known about the relationship between repeated sequences and deletion formation in mammalian cells. We have created a novel integrated plasmid-based recombination assay to investigate repeated sequence instability in human cells. In a control cell line, the presence of direct or inverted repeats did not appreciably influence the very low deletion frequencies (2 x 10(-7) to 9 x 10(-7)) in the region containing the repeat. Similar to what has been observed in lower eukaryotes, the majority of deletions resulted from the loss of the largest direct repeat present in the system along with the intervening sequence. Interestingly, in closely related cell lines that possess a mutant p53 gene, deletion frequencies in the control and direct-repeat plasmids were 40 to 300 times higher than in their wild-type counterparts. However, mutant p53 cells did not preferentially utilize the largest available homology in the formation of the deletion. Surprisingly, inverted repeats were approximately 10,000 times more unstable in all mutant p53 cells than in wild-type cells. Finally, several deletion junctions were marked by the addition of novel bases that were homologous to one of the preexisting DNA ends. Contrary to our expectations, only 6% of deletions in all cell lines could be classified as arising from nonhomologous recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号