首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastrointestinal hormone peptide YY is a potent inhibitor of food intake and is expressed early during differentiation of intestinal and pancreatic endocrine cells. In order to better understand the role of peptide YY in energy homeostasis and development, we created mice with a targeted deletion of the peptide YY gene. All intestinal and pancreatic endocrine cells developed normally in the absence of peptide YY with the exception of pancreatic polypeptide (PP) cells, indicating that peptide YY expression was not required for terminal differentiation. We used recombination-based cell lineage trace to determine if peptide YY cells were progenitors for gastrointestinal endocrine cells. Peptide YY(+) cells gave rise to all L-type enteroendocrine cells and to islet partial differential and PP cells. In the pancreas, approximately 40% of pancreatic alpha and rare beta cells arose from peptide YY(+) cells, suggesting that most beta cells and surprisingly the majority of alpha cells are not descendants of peptide YY(+)/glucagon-positive/insulin-positive cells that appear during early pancreagenesis. Despite the anorectic effects of exogenous peptide YY(3-36) following intraperitoneal administration, mice lacking peptide YY showed normal growth, food intake, energy expenditure, and responsiveness to peptide YY(3-36). These observations suggest that targeted disruption of the peptide YY gene does not perturb terminal endocrine cell differentiation or the control of food intake and energy homeostasis.  相似文献   

2.
Peptide YY. Structure of the precursor and expression in exocrine pancreas   总被引:4,自引:0,他引:4  
Peptide YY is a 36-residue gastrointestinal hormone which inhibits both pancreatic and gastric secretion. We have isolated a cDNA encoding the peptide YY precursor by screening a rat intestinal lambda gt11 cDNA library with an antiserum directed against the porcine hormone. The nucleotide sequence of the cDNA encodes a 98-residue protein (molecular weight, 11, 121) which has an amino acid sequence identical to that of porcine peptide YY. Rat peptide YY is preceded immediately by a signal sequence and followed by a cleavage-amidation sequence Gly-Lys-Arg plus 31 additional amino acids. Thus the peptide YY precursor is similar in structure to that of two related peptides, pancreatic polypeptide and neuropeptide Y. RNA blot hybridizations reveal that the peptide YY gene is much more actively expressed in pancreas than previously realized. In situ hybridizations localized peptide YY cells exclusively to the exocrine pancreas. The abundance of peptide YY in one of its target organs, the pancreas, suggests a paracrine mechanism for peptide YY in regulating pancreatic enzyme secretion.  相似文献   

3.
Peptide YY receptors in the brain   总被引:1,自引:0,他引:1  
Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.  相似文献   

4.
A 36-residue peptide amide corresponding to the entire amino acid sequence of porcine peptide YY (PYY) was synthesized by assembling eight peptide fragments of established purity, followed by hard acid deprotection with 1M trimethylsilyl trifluoromethanesulfonate in trifluoroacetic acid. beta-Cycloheptylaspartate, Asp(OChp), was employed to minimize the base-catalyzed succinimide formation. When administered to dogs, synthetic PYY was active as natural peptide in its effects on exocrine pancreatic secretion and pancreatic tissue blood flow.  相似文献   

5.
6.
The amino acid sequence of a peptide isolated from the Pacific salmon (Oncorhynchus kisutch) endocrine pancreas has been determined. This simple 36 residue peptide is a member of the pancreatic polypeptide family. It contains a C-terminal tyrosinamide and is more homologous with porcine neuropeptide Y (NPY) (83%) and peptide YY (75%) than any of the previously characterized pancreatic polypeptides (PP). This peptide appears to be the major but not the only representative of this family of peptides present in the endocrine pancreas of this fish. This peptide is referred to as salmon pancreatic polypeptide (salmon PP).  相似文献   

7.
The primary structure of pancreatic polypeptide from the teleostean fish, Cottus scorpius (daddy sculpin) was established as: YPPQPESPGGNASPEDWAKYHAAVRHYVNLITRQRYNH2 The presence of a COOH-terminally alpha-amidated amino acid was established using an HPLC method of general applicability. Although the peptide shows strong homology towards anglerfish pancreatic polypeptide (86%), homology towards porcine peptide YY (PYY) (61%) and porcine neuropeptide Y (NPY) (61%) was greater than towards porcine pancreatic polypeptide (PP) (47%). This result supports suggestions that the gene duplication events which led to PP, NPY and PYY formation took place after the time of divergence of fish and mammals.  相似文献   

8.
Pancreatic duct cells secrete the HCO(3)(-) ions found in pancreatic juice. While the regulatory pathways that stimulate pancreatic ductal HCO(3)(-) secretion are well described, little is known about inhibitory pathways, apart from the fact that they exist. Nevertheless, such inhibitory pathways may be physiologically important in terms of limiting the hydrostatic pressure within the lumen of the duct, and in terms switching off pancreatic secretion after a meal. Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. Importantly, most of these inhibitors have been shown to reduce secretion in isolated pancreatic ducts, so they must act directly on the ductal epithelium. This brief review provides an overview of our current knowledge of the inhibitors, and inhibitory pathways of pancreatic ductal secretion. SIGNALLING NETWORK FACTS: Methionine encephalin, insulin, somatostatin, peptide YY, substance P, basolaterally applied adenosine triphosphate, arginine vasopressin, 5-hydroxytryptamine and epidermal growth factor have all been shown to inhibit fluid and/or HCO(3)(-) secretion from pancreatic ducts. The inhibition of pancreatic secretion can be mediated by indirect (decreased cholinergic or increased adrenergic stimulation, decreased release of stimulatory hormones) and direct (inhibitory hormone or neurotransmitter acting on the duct cells) mechanisms.  相似文献   

9.
A radioimmunoassay using two antisera (antibody 80 and antibody 213) from rabbits immunized with porcine peptide YY has been characterized for both sensitivity and specificity. To determine the distribution of peptide YY in the gut, fresh tissue specimens from the human and canine gut were separated into mucosal-submucosal and muscularis externa layers by microdissection. These tissues and transmural specimens from murine gut were acid-extracted and neutralized, followed by radioimmunoassay using each antiserum. Immunoreactive peptide YY in canine and murine gut was present in similar concentration and distribution using each antiserum, with highest concentrations in the mucosal-submucosal layer of the descending colon. Using antibody 213, immunoreactive peptide YY throughout the human gut was measured only at the lower detection limit of the radioimmunoassay. By contrast, using antibody 80, peptide YY in human gut was present in a distribution similar to canine and murine gut. Using antibody 80, one major immunoreactive species was identified with C18 reverse-phase high-performance liquid chromatography in extracts of human, canine, and murine colon. These results suggest species-related antibody recognition differences. The similar concentrations of peptide YY in canine and murine gut determined with the two antisera are consistent with the hypothesis that the amino acid sequences of canine and murine peptide YY are similar to porcine peptide YY. Using antibody 213, the low concentrations of immunoreactive peptide YY found in human gut are consistent with the hypothesis that human and porcine peptide YY have different amino acid sequences. Antisera prepared by immunization with porcine PYY must therefore be carefully characterized prior to studies using human sera or human tissue extracts.  相似文献   

10.
The present status of our understanding of the feedback regulation of pancreatic secretion by peptide YY (PYY) released from the distal intestine is reviewed. Exocrine pancreatic secretion is primarily controlled by the cephalic (the vagus nerve), gastric (acid and pepsin secretion, and nutrients delivered into the duodenum by gastric emptying), and intestinal (secretin and CCK) mechanisms. PYY acts on the multiple sites in the brain and gut, and inhibits pancreatic secretion by regulating these primary control mechanisms. The involvement of Y(1) and Y(2) receptors has been suggested in the regulation of pancreatic secretion. However, it remains to be studied which site of action or receptor subtype is physiologically most important for this regulation.  相似文献   

11.
Homologous peptides belonging to the pancreatic polypeptide (PP) family were isolated from the pancreas of a teleostean fish, the American eel (Anguilla rostrata), an holostean fish, the bowfin (Amia calva) and an elasmobranch fish, the skate (Raja rhina), and their primary structures were determined. The peptides show stronger homology to neuropeptide Y, particularly in their COOH-terminal regions, than to peptide YY or pancreatic polypeptide and contain an alpha-amidated COOH-terminal tyrosine residue. The skate peptide Tyr-Pro-Pro-Lys-Pro-Glu-Asn-Pro-Gly-Asp10-Asp-Ala-Ala-Pro-Glu-Glu- Leu-Ala-Lys- Tyr20-Tyr-Ser-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Ile-Thr-Arg- Gln-Arg-Tyr-NH2 represents the first member of the PP family to be isolated from a cartilaginous fish. The primary structure of the pancreatic PP family peptide has been more strongly conserved among the phylogenetically more ancient holostean and elasmobranch fishes than among the teleosts. A comparison of the primary structures of all PP family peptides supports the hypothesis and evolution has acted to conserve features of tertiiary structure in the molecules (e.g., the polyproline- and alpha-helices) rather than individual amino acid residues.  相似文献   

12.
Many peptides are synthesized and released from the gastrointestinal tract and pancreas, including pancreatic polypeptide (PP) and the products of the gastrointestinal L cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY). Whereas their roles in regulation of gastrointestinal function have been known for some time, it is now evident that they also influence eating behavior. This review considers the anorectic peptides PYY, PP, GLP-1, and oxyntomodulin, which decrease appetite and promote satiety in both animal models and humans.  相似文献   

13.
Antisera were raised against the icosapeptide fragment of the pancreatic polypeptide (PP) isolated from the canine pancreas. They were used for the immunocytochemical study of the cellular localisation and distribution of the icosapeptide in the gut and pancreas of various mammals. The results indicate that PP and the icosapeptide coexist in the majority of the PP-immunoreactive cells in the pancreas of cat, dog, pig, monkey and man and in all the PP-immunoreactive cells in the stomach of the cat and dog. The icosapeptide does not seem to occur in cells or nerves containing PP-related peptides, such as peptide YY or neuropeptide Y. PP-immunoreactive cells devoid of the icosapeptide could be demonstrated in the large intestine. These cells are probably distinct from the pancreatic PP cell type, and the PP-immunoreactive material probably represents the homologous peptide YY rather than PP. The present findings support the view that the icosapeptide is part of the PP precursor and hence, only the cells containing immunoreactive icosapeptide in addition to immunoreactive PP are to be considered ‘true’ PP cells. The icosapeptide antisera did not stain PP cells in mouse, rat and guinea-pig, suggesting marked species variation in the amino acid sequence of the icosapeptide portion of the PP precursor.  相似文献   

14.
The peptide hormone recently isolated from anglerfish endocrine pancreas (aPY) (Andrews, P. C., Hawke, D., Shively, J.E., and Dixon, J.E. (1985) Endocrinology 116, 2677-2681), is a member of a family of peptide hormones which includes pancreatic polypeptide, neuropeptide Y, and the gut peptide YY. A 30-residue carboxyl-terminal fragment of the precursor to aPY has been purified from anglerfish endocrine pancreas in two steps using both classical chromatographic methods and reversed-phase high pressure liquid chromatography. It was identified by sequence homology with the analogous peptide from human preproneuropeptide Y. The sequence was found by Edman degradation and fast atom bombardment mass spectrometry to be SSPEEAVAWLLFKADPSQDIEPRLDDDNAW. The high yield of this fragment (6.5 nmol . g-1) is similar to that previously reported for aPY (7.9 nmol . g-1) and suggests that it is a major product of pro-aPY processing. The data indicate that pro-aPY is proteolytically processed into two major products: the 37-residue aPY and the 30-residue carboxyl-terminal fragment.  相似文献   

15.
The purpose of this work was to determine the mechanism of the antisecretory effect of peptide YY in the rat colon and whether this effect is physiological. In this prospect, doses of exogenous peptide YY producing physiological and supraphysiological plasma levels were intravenously infused in rats provided with colonic and jejunal ligated loops in vivo, under secretory stimulation by vasoactive intestinal peptide. Peptide YY decreased the secretory effect of VIP in a dose-related fashion. The effect of peptide YY was blocked or strongly decreased by tetrodotoxin, hexamethonium, idazoxan, haloperidol, and the sigma antagonist BMY 14, 802 in both the colon and jejunum. We conclude that peptide YY decreases water and electrolyte secretion in the colonic mucosa by a complex neural mechanism involving at least two neurons connected through a nicotinic synapse, alpha-2 adrenoceptors and sigma receptors, and that this effect can occur with physiological doses of peptide YY.  相似文献   

16.
By affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, we identified a novel cell surface receptor on intact rat cells, which bound, with similar dissociation constants, pancreatic polypeptide (PP), neuropeptide Y (NPY) and peptide YY (PYY), the members of the PP family. The receptor was detected on pancreatic islet and acinar cells, hepatocytes and epithelial cells of the stomach, duodenum and small intestine. Its molecular weight was estimated to be 65,000, and the cross-linking of [125I] labeled ligands was inhibited by an excess of unlabeled PP, NPY or PYY. The results suggest that the 65-kDa molecule is a common receptor for PP family peptides.  相似文献   

17.
The effect of peptide YY, a gastrointestinal hormone, on the expression of the apolipoprotein A-IV gene in the intestinal epithelial cell line Caco-2 was examined by semiquantitative RT-PCR followed by Southern hybridization with an inner oligonucleotide probe. Apolipoprotein A-IV mRNA levels were increased in response to peptide YY in a dose- and time-dependent fashion. Western blotting revealed that the exogenous peptide YY increased the intracellular concentration of apolipoprotein A-IV. In contrast, apolipoprotein A-I, B, and C-III mRNA did not respond to peptide YY. Differentiated Caco-2 cells expressed Y1- but not Y2- and Y5-receptor subtype mRNA. The present results suggest that peptide YY modulates apolipoprotein A-IV gene expression, likely via the Y1-receptor subtype in intestinal epithelial cells.  相似文献   

18.
Bariatric surgery for obesity has proved to be an extremely effective method of promoting long-term weight reduction with additional beneficial metabolic effects, such as improved glucose tolerance and remission of type 2 diabetes. A range of bariatric procedures are in common use, including gastric banding, sleeve gastrectomy and the Roux-en-Y gastric bypass. Although the mechanisms underlying the efficacy of bariatric surgery are unclear, gastrointestinal and pancreatic peptides are thought to play an important role. The aim of this review is to summarise the effects of different bariatric surgery procedures upon gastrointestinal and pancreatic peptides, including ghrelin, gastrin, cholecystokinin (CCK), glucose-dependent insulinotropic hormone (GIP), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), oxyntomodulin, insulin, glucagon and somatostatin.  相似文献   

19.
Isolation and characterization of bovine pancreastatin   总被引:1,自引:0,他引:1  
Bovine pancreastatin, a 47 amino acid residue peptide, was isolated from the pancreas and the pituitary gland using a chemical method which detects its C-terminal glycine amide structure. The complete amino acid sequence of the pancreatic peptide is 74% homologous to that of porcine pancreastatin and is identical to bovine chromogranin A-(248-294), as deduced from its cDNA sequence. The sequence of the first 28 amino-terminal residues of the pituitary peptide was determined to be identical to the corresponding sequence of the pancreatic peptide. Since the pituitary peptide also contains the C-terminal glycine amide, it is therefore likely to be identical in structure to the pancreatic peptide. Thus, we conclude that bovine chromogranin A is the precursor of bovine pancreastatin. Synthetic bovine pancreastatin inhibited pancreatic exocrine secretion in a similar manner to porcine pancreastatin.  相似文献   

20.
AIM: To investigate the effects of members of the pancreatic polypeptide family on migrating myoelectric complexes in rats in vivo. METHODS: Rats were supplied with bipolar electrodes at 5 (duodenum), 15 and 25 cm (jejunum) distal to pylorus for electromyography. The natural ligands neuropeptide Y, pancreatic polypeptide, peptide YY1-36 and peptide YY3-36 were infused IV at doses of 0.5-400 pmol kg(-1) min(-1). The mechanisms of action were studied after pre-treatment with N(omega)-nitro-L-arginine (L-NNA) 1 mg kg(-1), guanethidine 3 mg kg(-1) and in bilaterally vagotomized animals. RESULTS: PP inhibited myoelectrical activity dose-dependently in both the duodenum (ED50 5.8 pmol kg(-1) min(-1)) and jejunum (2.6 pmol kg(-1) min(-1)). PYY1-36 and PYY3-36 also had inhibitory effect in the jejunum (4.4 and 130 pmol kg(-1) min(-1), respectively). PYY1-36 had no significant effect in the duodenum, whereas PYY3-36 stimulated myoelectrical activity at the highest doses. NPY was without effect. In the jejunum neither L-NNA, guanethidine or vagotomy had any significant influence on the inhibitory effects of PP, PYY1-36 and PYY3-36. In the duodenum, the effect of PP was inhibited by guanethidine, but not L-NNA or vagotomy. The stimulatory effect of PYY3-36 in the duodenum was blocked by L-NNA and vagotomy, whereas guanethidine was without effect. CONCLUSION: Peptides of the PP family modulate small bowel motility differentially. Whereas their general effect is inhibitory in the jejunum, the mixing duodenal compartment is stimulated by PYY3-36, suggested to reflect receptor distribution distinction in the gut. This implicates distribution of distinct receptors in the gut being activated by either peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号