首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytokine network in the skin is a tightly regulated system in which IL-1 isoforms, as well as their receptors and antagonists have a central role. The recently discovered IL-1 isoform IL-18 (also known as interferon gamma-inducing factor (IGIF) or IL-1gamma), promotes IFN-gamma expression by T cells in concert with IL-12. Because IFN-gamma plays an important role in many inflammatory skin diseases by facilitating the development of Th1 cells, it is important to elucidate the role of mediators which regulate the production of this cytokine. We demonstrate that human keratinocytes constitutively express IL-18 at the mRNA as well as at the protein level. The protein was mainly expressed intracellularly in the 24 kD unprocessed pro-form, but was also secreted. Histochemistry revealed a diffuse staining of IL-18 in the epidermis of normal skin, which is in line with our in vitro data. Furthermore, we show that the level of IL-18 expressed in freshly isolated normal human epidermal cells, whether or not containing HLA-DR+ cells, significantly exceeded the expression levels of other cell types such as monocytes and bronchial epithelial cells. Finally, our results show that stimulation of the keratinocyte cell line HaCaT with PMA LPS or IL-1beta, does not significantly affect intracellular or released (pro) IL-18 levels. These experiments show for the first time that human keratinocytes relative to monocytes, PBMC or leukocytes produce a considerably larger amount of pro-IL-18, which is also readily released. High constitutive levels of IL-18 may contribute to the skewing towards a Th1-like environment, which is apparent in many human inflammatory skin diseases.  相似文献   

2.
Orchestration of the inflammatory response is crucial for clearing pathogens. Although the production of multiple inflammatory cytokines has been thought to be regulated by common mechanisms, recent evidence indicates that the expression of some cytokines is differentially regulated by epigenetic regulatory mechanisms. In this study, we found that IL-6 production is selectively inhibited by the BET bromodomain protein (BRD) inhibitor I-BET151 in RAW264.7 cells stimulated with lipopolysaccharide (LPS), whereas I-BET151 did not alter the production of several other cytokines (TNFα, IL-1β and IL-10) at the concentration of IBET151 used. I-BET151 prevented the binding of CBP to the promoter of IL-6, but I-BET151 did not affect acetylation, phosphorylation, nuclear translocation, or DNA binding of p65-NF-κB. In vivo, I-BET151 treatment in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis decreased the early clinical symptoms, which are thought to be dependent on cytokine production. Altogether, these data suggest that targeting epigenetic-related proteins, such as BET proteins, may provide a strategy to reduce inflammation and the severity of inflammatory diseases, such as multiple sclerosis.  相似文献   

3.
4.
Experimental autoimmune encephalomyelitis (EAE) is widely regarded as an animal model of the human disease multiple sclerosis. A multitude of studies has investigated the neuroantigen-specific T-cell mediated cytokine pattern present in animals with EAE. In particular, the role of the so-called Th1- and Th2-cytokines has been addressed. In a recent study, it has been demonstrated that IL-23 rather than IL-12 is critical for modulating the character of the developing immune response towards a proinflammatory response and leading to EAE. IL-17 is a crucial effector cytokine, whose production is specifically triggered by IL-23, and it has been shown to be an essential inflammatory mediator in other autoimmune diseases and inflammatory conditions. This led us to investigate the role of IL-17 in EAE. Strong antigen-specific production of IL-17 was demonstrated both in peripheral immune organs and in the CNS in acute and chronic EAE, as demonstrated by ELISPOT and RT-PCR analysis. Therapeutic neutralization of IL-17 with IL-17-receptor-Fc-protein in acute EAE ameliorated clinical symptoms. Neutralization of IL-17 with a monoclonal antibody also ameliorated the disease course. We conclude that IL-17 is crucially involved in the cytokine network as an effector cytokine in EAE.  相似文献   

5.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

6.
Proteome profiling of interleukin-12 treated human T helper cells   总被引:5,自引:0,他引:5  
Rosengren AT  Nyman TA  Lahesmaa R 《Proteomics》2005,5(12):3137-3141
Selective activation of T helper subsets 1 (Th1) and 2 (Th2) plays a crucial role in different pathological conditions. Th1 cell response is involved in pathogenesis of autoimmune diseases, such as type II diabetes and multiple sclerosis, and Th2 cell response in pathogenesis of allergy and asthma. Cytokine interleukin-12 (IL-12) is one of the key factors in the differentiation of na?ve CD4(+) T cells into Th1 cells. In this study we used 2-DE and MS to find and identify IL-12 regulated proteins in human CD4(+) T cells. In total, 42 protein spots were found to be differentially expressed following IL-12 stimulation, of which 22 were up- and 20 down-regulated. Among the upregulated proteins there are a multifunctional cytokine macrophage migration inhibitory factor and a known IL-12 target gene Programmed cell death 4. Downregulated proteins include p21-activated kinase 2 and its upstream GTPase Cdc42. Compared to previous reports our analysis provides a new view on the IL-12 induced changes on CD4(+) T cells underscoring the importance of creating and combining the data generated at various levels to build a comprehensive view of a given biological process of the cell.  相似文献   

7.
Monocytes/macrophages (Mphi) play a pivotal role in the persistence of chronic inflammation and local tissue destruction in diseases such as rheumatoid arthritis and atherosclerosis. The production by Mphi of cytokines, chemokines, metalloproteinases and their inhibitors is an essential component in this process, which is tightly regulated by multiple factors. The peroxisome proliferator-activated receptors (PPARs) were shown to be involved in modulating inflammation. PPARgamma is activated by a wide variety of ligands such as fatty acids, the anti-diabetic thiazolidinediones (TZDs), and also by certain prostaglandins of which 15-deoxy-Delta(12,14)-PGJ2 (PGJ2). High concentrations of PPARgamma ligands were shown to have anti-inflammatory activities by inhibiting the secretion of interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFalpha) by stimulated monocytes.The aim of this study was to determine whether PGJ2 and TZDs would also exert an immunomodulatory action through the up-regulation of anti-inflammatory cytokines such as the IL-1 receptor antagonist (IL-1Ra). THP-1 monocytic cells were stimulated with PMA, thereby enhancing the secretion of IL-1, IL-6, TNFalpha, IL-1Ra and metalloproteinases. Addition of PGJ2 had an inhibitory effect on IL-1, IL-6 and TNFalpha secretion, while increasing IL-1Ra production. In contrast, the bona fide PPARgamma ligands (TZDs; rosiglitazone, pioglitazone and troglitazone) barely inhibited proinflammatory cytokines, but strongly enhanced the production of IL-1Ra from PMA-stimulated THP-1 cells. Unstimulated cells did not respond to TZDs in terms of IL-1Ra production, suggesting that in order to be effective, PPAR ligands depend on PMA signalling. Basal levels of PPARgamma are barely detectable in unstimulated THP-1 cells, while stimulation with PMA up-regulates its expression, suggesting that higher levels of PPARgamma expression are necessary for receptor ligand effects to occur. In conclusion, we demonstrate for the first time that TZDs may exert an anti-inflammatory activity by inducing the production of the IL-1Ra.  相似文献   

8.
Mounting evidence has established a role for chronic inflammation in the development of obesity-induced insulin resistance, as genetic ablation of pro-inflammatory cytokines and chemokines elevated in obesity improves insulin signaling in vitro and in vivo. Recent evidence further highlights interleukin (IL)-12 family cytokines as prospective inflammatory mediators linking obesity to insulin resistance. In this study, we present empirical evidence demonstrating that IL-12 family related genes are expressed and regulated in insulin-responsive tissues under conditions of obesity. First, we report that respective mRNAs for each of the known members of this cytokine family are expressed within detectable ranges in WAT, skeletal muscle, liver and heart. Second, we show that these cytokines and their cognate receptors are divergently regulated with genetic obesity in a tissue-specific manner. Third, we demonstrate that select IL-12 family cytokines are regulated in WAT in a manner that is dependent on the developmental stage of obesity as well as the inflammatory progression associated with obesity. Fourth, we report that respective mRNAs for IL-12 cytokines and receptors are also expressed and divergently regulated in cultured adipocytes under conditions of inflammatory stress. To our knowledge, this report is the first study to systemically evaluated mRNA expression of all IL-12 family cytokines and receptors in any tissue under conditions of obesity highlighting select family members as potential mediators linking excess nutrient intake to metabolic diseases such as insulin resistance, diabetes and heart disease.  相似文献   

9.
IL-12 plays a pivotal role in the stimulation of immune responses against intracellular infections. This role is manifested in the increased susceptibility to atypical mycobacterial and salmonella infections among individuals whose lymphocytes lack expression of IL-12Rbeta1. Here, we report on a patient with Mycobacterium avium infection, recurrent Staphylococcus aureus sinusitis, and multiple adverse drug reactions whose T cells were unable to produce IFN-gamma or proliferate in response to IL-12 despite the expression of wild-type IL-12Rbeta1 and IL-12Rbeta2. The defect in these functional responses to IL-12 was selective, as cytolytic activity induced by IL-12 was intact, and lymphocytes were responsive to stimulation by IL-2. An examination of cytokine signaling revealed that STAT4 and extracellular regulated kinase 1 (ERK1) activation by IL-12 was intact, whereas the activation of STAT1, -3, and -5 by IL-12 was lost. This impairment of STAT activation was specific for IL-12, as STAT activation by IL-2, IL-15, and IFN-gamma was unaffected. These findings demonstrate that the activation of STAT4 alone is not sufficient for IL-12-induced IFN-gamma production and proliferation and suggest that other STATs play a role in these responses to IL-12. While the etiology of the impaired IL-12 signaling in this patient has not yet been elucidated, the absence of mutations in IL-12Rbeta1 or IL-12Rbeta2 and the preservation of STAT4 activation raise the possibility that there may be a mutation in an as yet undiscovered component of the IL-12 signaling complex that is normally required for the recruitment and activation of STAT1, -3, and -5.  相似文献   

10.
IFN-gamma arms human dendritic cells to perform multiple effector functions   总被引:1,自引:0,他引:1  
Dendritic cells (DCs) are central players in immunity and are used in immune-adoptive vaccine protocols in humans. IFN-gamma, mandatory in Th-1 polarization and endowed with regulatory properties, is currently used to condition monocyte-derived DCs (MDDC) in cancer therapy and in clinical trials to treat chronic infectious diseases. We therefore performed a wide analysis of IFN-gamma signaling consequences on MDDC multiple effector functions. IFN-gamma itself induced IL-27p28 expression and survival but did not promote relevant CCR7-driven migration or activated Th-1 cell recruitment capacity in MDDC. Administered in association with classical maturation stimuli such as CD40 or TLR-4 stimulation, IFN-gamma up-regulated IL-27 and IL-12 production, CCR7-driven migration, and activated Th-1 cell recruitment, whereas it decreased IL-10 production and STAT3 phosphorylation. CD38 signaling, which orchestrates migration, survival, and Th-1 polarizing ability of mature MDDC, was involved in IFN-gamma-mediated effects. Thus, IFN-gamma is a modulator of multiple DC effector functions that can be helpful in MDDC-based vaccination protocols. These data also help understand the dual role exerted by this cytokine as both an inducer and a regulator of inflammation and immune response.  相似文献   

11.
Interleukin-12 (IL-12) and IL-23 are proinflammatory cytokines and therapeutic targets for inflammatory and autoimmune diseases, including inflammatory bowel diseases, psoriasis, rheumatoid arthritis, and multiple sclerosis. We describe the discovery of APY0201, a unique small molecular IL-12/23 production inhibitor, from activated macrophages and monocytes, and demonstrate ameliorated inflammation in an experimental model of colitis. Through a chemical proteomics approach using a highly sensitive direct nanoflow LC–MS/MS system and bait compounds equipped with the FLAG epitope associated regulator of PIKfyve (ArPIKfyve) was detected. Further study identified its associated protein phosphoinositide kinase, FYVE finger-containing (PIKfyve), as the target protein of APY0201, which was characterized as a potent, highly selective, ATP-competitive PIKfyve inhibitor that interrupts the conversion of phosphatidylinositol 3-phosphate (PtdIns3P) to PtdIns(3,5)P2. These results elucidate the function of PIKfyve kinase in the IL-12/23 production pathway and in IL-12/23-driven inflammatory disease pathologies to provide a compelling rationale for targeting PIKfyve kinase in inflammatory and autoimmune diseases.  相似文献   

12.
There is accumulating evidence that interleukin 12 (IL-12) is involved in the pathogenesis of multiple sclerosis. In the periphery, this cytokine is produced by antigen-presenting cells (APCs) following interaction with activated T cells. CD40 ligation plays a crucial role in this production. Microglial cells are thought to play a major role in antigen presentation in the central nervous system. In this work, we examined IL-12 production by human primary microglial cells after CD40 ligation. These cells expressed CD40 and MHC class II following interferon-gamma activation. IL-12 p40 mRNA and protein, but not bioactive IL-12 p70, were detected in response to direct CD40 activation. Microglial cells co-cultured with activated allogenic CD4+ T lymphocytes also produced IL-12 p40 but not IL-12 p70. This IL-12 p40 production was inhibited by anti-CD40 ligand. Altogether, these results suggest that CD40-CD40-ligand interaction provides a signal that triggers IL-12 p40 expression. However, other interaction(s) may be required during antigen presentation for bioactive heterodimeric IL-12 p70 to be produced by microglial cells.  相似文献   

13.
Recently, it has been found that overproduction of IL-12 can be dangerous to the host as it is involved in the pathogenesis of a number of autoimmune inflammatory diseases such as multiple sclerosis. It is composed of two different subunits – p40 and p35. Expression of p40 mRNA but not that of p35 mRNA in excessive amount in the CNS of patients with Multiple Sclerosis (MS) suggests that IL-12 p40 may have a role in the pathogenesis of the disease. The present study was undertaken to explore the role of p40 in the expression of TNF-α in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-α in BV-2 microglial cells. This induction of TNF-α production was accompanied by an induction of TNF-α mRNA. In addition to BV-2 glial cells, p70, p402 and p40 also induced the production of TNF-α in mouse primary microglia and peritoneal macrophages. Since the activation of both NF-κB and C/EBPb is important for the expression of TNF-α in microglial cells, we investigated the effect of p40 on the activation of NF-κB as well as C/EBPb. Activation of NF-κB as well as C/EBPb by p40 and inhibition of p40-induced expression of TNF-α by Dp65, a dominant-negative mutant of p65, and DC/EBPb, a dominant-negative mutant of C/EBPb, suggests that p40 induces the expression of TNF-α through the activation of NF-κB and C/EBPb. This study delineates a novel role of IL-12 p40 in inducing the expression of TNF-α in microglial cells which may participate in the pathogenesis of neuroinflammatory diseases.
Acknowledgements:   This study was supported by NIH grants (NS39940 and AG19487).  相似文献   

14.
Toll-like receptors (TLR) that signal through the common adaptor molecule myeloid differentiation factor 88 (MyD88) are essential in proinflammatory cytokine responses to many microbial pathogens. In this study we report that Toxoplasma gondii triggers neutrophil IL-12 and chemokine ligand 2 (CCL2; monocyte chemoattractant protein 1) production in strict dependence upon functional MyD88. Nevertheless, the responses are distinct. Although we identify TLR2 as the receptor triggering CCL2 production, parasite-induced IL-12 release did not involve this TLR. The production of both IL-12 and CCL2 was increased after neutrophil activation with IFN-gamma. However, the synergistic effect of IFN-gamma on IL-12, but not CCL2, was dependent upon Stat1 signal transduction. Although IL-10 was a potent down-regulator of Toxoplasma-triggered neutrophil IL-12 release, the cytokine had no effect on parasite-induced CCL2 production. Soluble tachyzoite Ag fractionation demonstrated that CCL2- and IL-12 inducing activities are biochemically distinct. Importantly, Toxoplasma cyclophilin-18, a molecule previously shown to induce dendritic cell IL-12, was not involved in neutrophil IL-12 production. Our results show for the first time that T. gondii possesses multiple molecules triggering distinct MyD88-dependent signaling cascades, that these pathways are independently regulated, and that they lead to distinct profiles of cytokine production.  相似文献   

15.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   

16.
IL-12 and TNF-alpha are central proinflammatory cytokines produced by macrophages and dendritic cells. Disregulation of TNF-alpha is associated with sepsis and autoimmune diseases such as rheumatoid arthritis. However, new evidence suggests an anti-inflammatory role for TNF-alpha. TNF-alpha-treated murine macrophages produced less IL-12p70 and IL-23, after stimulation with IFN-gamma and LPS. Frequency of IL-12p40-producing macrophages correspondingly decreased as measured by intracellular cytokine staining. IL-12p40 production was also inhibited in dendritic cells. TNFR1 was established as the main receptor involved in IL-12p40 regulation, because IL-12p40 levels were not affected by TNF-alpha in TNFR1(-/-)-derived macrophages. Macrophages activated during Listeria monocytogenes infection were more susceptible to inhibition by TNF-alpha than cells from naive animals, which suggests a regulatory role for TNF-alpha in later stages of infection. This nonapoptotic anti-inflammatory regulation of IL-12 and IL-23 is an important addition to the multitude of TNF-alpha-induced responses determined by cell-specific receptor signaling.  相似文献   

17.
Interleukin (IL)-18, structurally similar to IL-1-, is a member of IL-1 superfamily of cytokines. This cytokine, which is expressed by many human lymphoid and nonlymphoid cells, has an important role in inflammatory processes. The main function of IL-18 is mediated through induction of interferon-γ (IFN-γ) secretion from T helper (Th1) cells. This cytokine synergistically with IL-12 contributes to Th1 differentiation and, therefore, is important in host defense mechanisms against intracellular bacteria, viruses, and fungi. Recent evidences showing the involvement of IL-18 in Th2 differentiation and ultimately IgE production from B cells have shed a new insight on the dual effects of IL-18 on Th1 and Th2 inflammatory responses. IL-18 in combination with IL-12 can activate cytotoxic T cells (CTLs), as well as natural killer (NK) cells, to produce IFN-γ and, therefore, may contribute to tumor immunity. The biological activity of IL-18 is not limited to these cells, but it also plays a role in development of Th17 cell responses. IL-18 synergistically with IL-23 can induce IL-17 secretion from Th17 cells. The diverse biological activity of IL-18 on T-cell subsets and other immune cells has made this cytokine a good target for investigating its role in various inflammatory-based diseases. Lately, the discovery of IL-18 binding protein (IL- 18BP), a physiological inhibitor of IL-18 and a hallmark of IL-18 biology, made this cytokine an attractive target for studying its pros and cons in the treatment of various diseases. In recent years, the biology, genetics, and pathological role of IL-18 have been studied in a number of diseases. In this article, we aimed to present an updated review on these aspects regarding the contribution of IL-18 to important diseases such as cancer, autoimmunity, and inflammatory-mediated conditions including allergic diseases, metabolic syndrome, and atherosclerosis. Emerging data indicating prognostic, diagnostic, and therapeutic features of IL-18 and its related molecules will also be discussed.  相似文献   

18.
Interleukin (IL)-17 is a pro-inflammatory cytokine that is produced by activated T cells. Despite increasing evidence that high levels of IL-17 are associated with several chronic inflammatory diseases including rheumatoid arthritis, psoriasis, and multiple sclerosis, the regulation of its expression is not well characterized. We observe that IL-17 production is increased in response to the recently described cytokine IL-23. We present evidence that murine IL-23, which is produced by activated dendritic cells, acts on memory T cells, resulting in elevated IL-17 secretion. IL-23 also induced expression of the related cytokine IL-17F. IL-23 is a heterodimeric cytokine and shares a subunit, p40, with IL-12. In contrast to IL-23, IL-12 had only marginal effects on IL-17 production. These data suggest that during a secondary immune response, IL-23 can promote an activation state with features distinct from the well characterized Th1 and Th2 profiles.  相似文献   

19.
20.
Interleukin-12 (IL-12), a key cytokine in immune regulation, has an important role in activating the cell-mediated immune response in infectious diseases. Recently, a dichotomy between IL-12 and IL-10 regarding progression of a variety diseases has emerged. IL-12 activates type 1 cytokine production and has an antagonistic effect on type 2 cytokines. Here, by using quantitative competitive PCR, we show that peripheral blood mononuclear cells from bovine leukemia virus-infected animals in the alymphocytotic stage of disease express an increased amount of IL-12 p40 mRNA. In contrast, IL-12 p40 mRNA expression by cells from animals with late-stage disease, termed persistent lymphocytosis, was significantly decreased compared to that by normal and alymphocytotic animals. Interestingly, IL-12 p40 mRNA was also detected in tumor-bearing animals. IL-12 p40 expression occurred only in monocytes/macrophages, not B or T lymphocytes. The present study combined with previous findings suggest that IL-12 in bovine leukemia virus-infected animals may regulate production of other cytokines such as gamma interferon and IL-10 and the progression of bovine leukosis in animals that develop more advanced disease such as a persistent lymphocytosis of B cells or B-cell lymphosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号