共查询到20条相似文献,搜索用时 15 毫秒
1.
A protocol is presented for preparing Rhodotorula gracilis D-amino acid oxidase in homogeneous form and in high yield in 3 to 4 days. The method takes advantage of (a) cell rupture by alternate freeze-thawing, (b) use of DEAE-Sepharose to bind contaminants, and (c) enzyme binding to a Mono S column. The D-amino acid oxidase isolated by this means has the same spectral and catalytic properties as the enzyme previously obtained, and possesses improved long-term stability. 相似文献
2.
P Casalin L Pollegioni B Curti M Pilone Simonetta 《European journal of biochemistry》1991,197(2):513-517
The apoenzyme of D-amino acid oxidase from Rhodotorula gracilis was obtained at pH 7.5 by dialyzing the holoenzyme against 2 M KBr in 0.25 M potassium phosphate, 0.3 mM EDTA, 5 mM 2-mercaptoethanol and 20% glycerol. To recover a reconstitutable and highly stable apoprotein, it is essential that phosphate ions and glycerol be present at high concentrations. Apo-D-amino acid oxidase is entirely present as a monomeric protein, while the reconstituted holoenzyme is a dimer of 79 kDa. The equilibrium binding of FAD to apoprotein was measured from the quenching of flavin fluorescence and by differential spectroscopy: a Kd of 2.0 x 10(-8) M was calculated. The kinetics of formation of the apoprotein-FAD complex were studied by the quenching of protein and flavin fluorescence, by differential spectroscopy and by activity measurements. In all cases a two-stage process was shown to be present with a fairly rapid first phase, followed by a slow secondary change which represents only 4-6% of the total recombination process. In no conditions was a lag in the recovery of maximum catalytic activity observed. The process of FAD binding to yeast D-amino acid oxidase appears to be of the type Apo + FAD in equilibrium holoenzyme, even though the existence of a transient intermediate not detectable under our conditions cannot be ruled out. 相似文献
3.
Summary A process for the production (in a stirred tank reactor) of glutaryl-7-ACA from cephalosporin C using immobilized D-amino acid oxidase is described. Results so obtained under optimal conditions (1.2 mg coupled enzyme/L, pH 8.5, 2 mM cephalosporin C) point to a system which shows high conversion efficiency and a remarkable operational stability. No exogenous H2O2 is requested to shift the reaction equilibrium toward glutaryl-7-ACA production, nor any side product is detected. The immobilized system productivity was 54 g/day/mg of enzyme. This process represents the first reported case of a reactor successfully developed with a DAAO for bioconversion of cephalosporin C. 相似文献
4.
The flavoenzyme d-amino acid oxidase from Rhodotorula gracilis is a homodimeric protein whose dimeric state has been proposed to occur as a result of (a) the electrostatic interactions between positively charged residues of the betaF5-betaF6 loop of one monomer and negatively charged residues belonging to the alpha-helices I3' and I3' of the other monomer, and (b) the interaction of residues (e.g. Trp243) belonging to the two monomers at the mixed interface region. The role of Trp243 was investigated by substituting it with either tyrosine or isoleucine: both substitutions were nondisruptive, as confirmed by the absence of significant changes in catalytic activity, but altered the tertiary structure (yielding a looser conformation) and decreased the stability towards temperature and denaturants. The change in conformation interferes both with the interaction of the coenzyme to the apoprotein moiety (although the kinetics of the apoprotein-FAD complex reconstitution process are similar between wild-type and mutant D-amino acid oxidases) and with the interaction between monomers. Our results indicate that, in the folded holoenzyme, Trp243 is situated at a position optimal for increasing the interactions between monomers by maximizing van der Waals interactions and by efficiently excluding solvent. 相似文献
5.
The study reports on the development of a bioreactor for the production of alpha-keto acids from D,L- or D-amino acids using Rhodotorula gracilis D-amino acid oxidase. D-Amino acid oxidase was co-immobilized with catalase on Affi-Gel 10 matrix, and the reactor was operated as a continuous-stirred tank reactor (CSTR) or stirred tank with medium recycling conditions. The optimum substrate concentration and quantity of biocatalyst were determined (5 mM and 1.2 mg/L, respectively). Under optimum operating conditions, product formation was linearly related to both substrate and enzyme concentration, showing the system to be highly flexible. Under these conditions, in a stirred tank, over 90% conversion was achieved in 30 min with a maximum production of 0.23 g of pyruvic acid/day/enzyme units. Product was recovered by ion exchange chromatography. The operational stability of the reactor was high (up to 9.5 h of operation without loss of activity) and the inactivation half-life was not reached even after 18 h or 36 bioconversion cycles. This represents the first case of a reactor developed successfully with a D-amino acid oxidase. (c) 1994 John Wiley & Sons, Inc. 相似文献
6.
Endothelial cells (ECs) secrete numerous bioactive peptides that are initially synthesized as inactive precursor proteins. One of these, proendothelin-1 (proET-1), undergoes proteolysis at specific pairs of basic amino acids. Here, we wished to examine the role of mammalian convertases in this event. Northern blot analysis shows that only furin and PC7 are expressed in ECs. In vitro cleavage of proET-1 by furin or PC7 demonstrated that both enzymes efficiently and specifically process proET-1. These data reveal that furin and PC7 have similar specificities towards proET-1 and suggest that both enzymes may participate in the maturation of proET-1 in ECs. 相似文献
7.
Properties of D-amino-acid oxidase from Rhodotorula gracilis 总被引:2,自引:0,他引:2
M Pilone Simonetta L Pollegioni P Casalin B Curti S Ronchi 《European journal of biochemistry》1989,180(1):199-204
The flavoprotein D-amino-acid oxidase was purified to homogeneity from the yeast Rhodotorula gracilis by a highly reproducible procedure. The amino acid composition of the protein was determined; the protein monomer had a molecular mass of 39 kDa and contained one molecule of FAD. The ratio between A274/A455 was about 8.2. D-Amino-acid oxidase from yeast showed typical flavin spectral perturbations on binding of the competitive inhibitor benzoate and was reduced by D-alanine under anaerobiosis. The enzyme reacted readily with sulfite to form a covalent reversible adduct and stabilized the red anionic form of the flavin semiquinone on photoreduction in the presence of 5-deazariboflavin; the 3,4-dihydro-FAD form was not detectable after reduction with sodium borohydride. Thus D-amino-acid oxidase from yeast exhibited most of the general properties of the dehydrogenase/oxidase class of flavoproteins; at the same time, the enzyme showed some peculiar features with respect to the same protein from pig kidney. 相似文献
8.
Boselli A Piubelli L Molla G Sacchi S Pilone MS Ghisla S Pollegioni L 《Biochimica et biophysica acta》2004,1702(1):19-32
Serine 335 at the active site of D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO) is not conserved in other DAAO sequences. To assess its role in catalysis, it was mutated to Gly, the residue present in mammalian DAAO, an enzyme with a 35-fold lower turnover number with D-alanine. The spectral and ligand binding properties of the S335G mutant are similar to those of wild-type enzyme, suggesting an active site with minimally altered electrostatic properties. The S335G mutant is catalytically active, excluding an essential role of S335 in catalysis. However, S335-OH contributes to the high efficiency of the mutant enzyme since the catalytic activity of the latter is lower due to a decreased rate of flavin reduction relative to wild-type RgDAAO. Catalytic rates are pH-dependent and appear to converge to very low, but finite and similar values at low pH for both wild-type and S335G RgDAAO. While this dependence exhibits two apparent pKs with wild-type RgDAAO, with the S335G mutant a single, apparent pK approximately 8 is observed, which is attributed to the ionization of the alphaNH2 group of the bound substrate. Removal of S335-OH thus suppresses an apparent pK approximately 6. Both wild-type RgDAAO and the S335G mutant exhibit a substantial deuterium solvent kinetic isotope effect (> or =4) at pH<7 that disappears with increasing pH and reflects a pKapp=6.9 +/- 0.4. Interestingly, the substitution suppresses the activity towards d-lactate, suggesting a role of the serine 335 in removal of the substrate alpha-OH hydrogen. 相似文献
9.
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase. 相似文献
10.
de la Mata I Ramón F Obregón V Castillón MP Acebal C 《Enzyme and microbial technology》2000,27(3-5):234-239
D-amino acid oxidase from Rhodotorula gracilis is a FAD-containing enzyme that belongs to the oxidase class that is characterized by the ability of the reduced flavin to react quickly with oxygen, yielding hydrogen peroxide and the oxidized cofactor. Hydrogen peroxide, necessary for the production of glutaryl-7-ACA from cephalosporin C had a deleterious effect on the enzyme. H(2)O(2) induced the oxidation of tryptophan and cysteine residues of the protein that could be involved in the dimerization process, required for the attainment of a fully competent enzyme. H(2)O(2) had also a kinetic effect on the reaction catalyzed by D-amino acid oxidase. It was a pure noncompetitive inhibitor; the corresponding inhibition constants were K(is) = 0.52 mM and K(ii) = 0.70 mM. 相似文献
11.
D-amino acid oxidase is expressed to a high level in the yeast Rhodotorula gracilis (0.3% of total cell protein) through induction by D-alanine in a defined growth medium. Monospecific polyclonal antibodies against pure enzyme were obtained. Western blot analysis showed that the enzyme is synthesized as the mature polypeptide. The localization of the enzyme was investigated by immunoelectron microscopy using the postembedding immunogold technique and by submicroscopic enzyme cytochemistry. D-Amino acid oxidase was detected in peroxisomes, and quantitation of immunoelectron microscopic data indicated that the enzyme is exclusively confined to these organelles. Immunoelectron microscopic observations are in complete agreement with biochemical data showing that the enzyme is not expressed in the absence of D-alanine. Morphometric analysis demonstrated that induction of D-amino acid oxidase synthesis is associated with a 241% increase of peroxisome volume density and with a 31% increase of peroxisome size as compared to cells grown on non-inducing medium. 相似文献
12.
13.
Molla G Porrini D Job V Motteran L Vegezzi C Campaner S Pilone MS Pollegioni L 《The Journal of biological chemistry》2000,275(32):24715-24721
Arg(285), one of the very few conserved residues in the active site of d-amino acid oxidases, has been mutated to lysine, glutamine, aspartate, and alanine in the enzyme from the yeast Rhodotorula gracilis (RgDAAO). The mutated proteins are all catalytically competent. Mutations of Arg(285) result in an increase ( approximately 300-fold) of K(m) for the d-amino acid and in a large decrease ( approximately 500-fold) of turnover number. Stopped-flow analysis shows that the decrease in turnover is paralleled by a similar decrease in the rate of flavin reduction (k(2)), the latter still being the rate-limiting step of the reaction. In agreement with data from the protein crystal structure, loss of the guanidinium group of Arg(285) in the mutated DAAOs drastically reduces the binding of several carboxylic acids (e.g. benzoate). These results highlight the importance of this active site residue in the precise substrate orientation, a main factor in this redox reaction. Furthermore, Arg(285) DAAO mutants have spectral properties similar to those of the wild-type enzyme, but show a low degree of stabilization of the flavin semiquinone and a change in the redox properties of the free enzyme. From this, we can unexpectedly conclude that Arg(285) in the free enzyme form is involved in the stabilization of the negative charge on the N(1)-C(2)=O locus of the isoalloxazine ring of the flavin. We also suggest that the residue undergoes a conformational change in order to bind the carboxylate portion of the substrate/ligand in the complexed enzyme. 相似文献
14.
Angelo Boselli Silvia Sacchi Viviana Job Mirella S Pilone Loredano Pollegioni 《European journal of biochemistry》2002,269(19):4762-4771
Y238, one of the very few conserved residues in the active site of d-amino acid oxidases (DAAO), was mutated to phenylalanine and serine in the enzyme from the yeast Rhodotorula gracilis. The mutated proteins are catalytically competent thus eliminating Tyr238 as an active-site acid/base catalyst. Y238F and Y238S mutants exhibit a threefold slower turnover on d-alanine as substrate, which can be attributed to a slower rate of product release relative to the wild-type enzyme (a change of the rate constants for substrate binding was also evident). The Y238 DAAO mutants have spectral properties similar to those of the wild-type enzyme but the degree of stabilization of the flavin semiquinone and the redox properties in the free form of Y238S are different. The binding of the carboxylic acid competitive inhibitors and the substrate d-alanine are changed only slightly, suggesting that the overall substrate binding pocket remains intact. In agreement with data from the pH dependence of ligand binding and with the protein crystal structure, site-directed mutagenesis results emphasize the importance of residue Y238 in controlling access to the active site instead of a role in the substrate/ligand interaction. 相似文献
15.
Abad S Nahalka J Winkler M Bergler G Speight R Glieder A Nidetzky B 《Biotechnology letters》2011,33(3):557-563
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated. 相似文献
16.
The cellular D-amino acid oxidase (DAAO) and catalase activities of Rhodotorula gracilis were greatly increased upon the treatment of the cells with cetyltrimethylammonium bromide (CTAB). However, these enzymes, slowly leaks out from the permeabilized cells. The released DAAO was rapidly inactivated in the absence of ethylenediaminotetraacetic acid (EDTA), beta-mercaptoethanol, and glycerol. DAAO within the permeabilized cells did not require these stabilizing agents. Treating the CTAB-permeabilized cells with 0.2% glutaraldehyde (GA) at 4 degrees C for 10 min prevented the leakage of both DAAO and catalase. Alternately, stabilized whole cell DAAO and catalase was prepared by treating the whole yeast cells with 1% GA at 4 degrees C for 60 min, followed by permeabilization with CTAB, a method which was equally efficient but easy to scale up. CTAB-permeabilized cells converted D-phenylalanine to 97% phenylpyruvate and 3% phenylacetate, and these cells were reused up to 3 cycles in a batchwise reaction. On the other hand, GA-treated CTAB-permeabilized cells produced more than 99% phenylpyruvate and the cells could be reused up to 20 cycles. 相似文献
17.
The primary structure of D-amino acid oxidase from pig kidney. I. Isolation and sequence of the tryptic peptides 总被引:1,自引:0,他引:1
R P Swenson C H Williams V Massey S Ronchi L Minchiotti M Galliano B Curti 《The Journal of biological chemistry》1982,257(15):8817-8823
D-Amino acid oxidase from pig kidney cortex was digested with trypsin. Thirty-two tryptic peptides were isolated by ion exchange chromatography, high voltage paper electrophoresis, descending paper chromatography, and reverse-phase high performance liquid chromatography. The last method permitted the isolation of 29 tryptic peptides, many in a single step, in yields usually greater than 75%. The purified peptides were characterized by amino acid analysis and their sequences determined by the manual 5-dimethylaminonaphthalene-1-sulfonyl-Edman degradation procedure or by the automated Edman-Begg degradation method. These peptides accounted for all 12 lysine and 21 arginine residues observed by amino acid analysis of the intact protein and for 347 amino acid residues of the 345 predicted by the analysis. 相似文献
18.
19.
20.
A procedure has been developed for the partial purification from Chlorella vulgaris of an enzyme which catalyzes the formation of HCN from D-histidine when supplemented with peroxidase of a metal with redox properties. Some properties of the enzyme are described. Evidence is presented that the catalytic activity for HCN formation is associated with a capacity for catalyzing the oxidation of a wide variety of D-amino acids. With D-leucine, the best substrate for O2 consumption, 1 mol of ammonia is formed for half a mol of O2 consumed in the presence of catalase. An inactive apoenzyme can be obtained by acid ammonium sulfate precipitation, and reactivated by added FAD. On the basis of these criteria, the Chlorella enzyme can be classified as a D-amino acid oxidase (EC 1.4.3.3). Kidney D-amino acid oxidase and snake venom L-amino acid oxidase, which likewise form HCN from histidine on supplementation with peroxidase, have been compared with the Chlorella D-amino acid oxidase. The capacity of these enzymes for causing HCN formation from histidine is about proportional to their ability to catalyze the oxidation of histidine. 相似文献