首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary With the use of neutral sucrose sedimentation techniques, the size of unirradiated nuclear DNA and the repair of double-strand breaks induced in it by ionizing radiation have been determined in both wild-type and homozygous rad52 diploids of the yeast Saccharomyces cerevisiae. The number average molecular weight of unirradiated DNA in these experiments is 3.0×108±0.3 Daltons. Double-strand breaks are induced with a frequency of 0.58×10-10 per Daltonkrad in the range of 25 to 100 krad. Since repair at low doses is observed in wild-type but not homozygous rad52 strains, the corresponding rad52 gene product is concluded to have a role in the repair process. Cycloheximide was also observed to inhibit repair to a limited extent indicating a requirement for protein synthesis. Based on the sensitivity of various mutants and the induction frequency of double-strand breaks, it is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks.  相似文献   

2.
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.  相似文献   

3.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

4.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

5.
Elizabeth M. Kass 《FEBS letters》2010,584(17):3703-42482
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.  相似文献   

6.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The survival of microorganisms in ancient glacial ice and permafrost has been ascribed to their ability to persist in a dormant, metabolically inert state. An alternative possibility, supported by experimental data, is that microorganisms in frozen matrices are able to sustain a level of metabolic function that is sufficient for cellular repair and maintenance. To examine this experimentally, frozen populations of Psychrobacter arcticus 273-4 were exposed to ionizing radiation (IR) to simulate the damage incurred from natural background IR sources in the permafrost environment from over ∼225 kiloyears (ky). High-molecular-weight DNA was fragmented by exposure to 450 Gy of IR, which introduced an average of 16 double-strand breaks (DSBs) per chromosome. During incubation at −15°C for 505 days, P. arcticus repaired DNA DSBs in the absence of net growth. Based on the time frame for the assembly of genomic fragments by P. arcticus, the rate of DNA DSB repair was estimated at 7 to 10 DSBs year−1 under the conditions tested. Our results provide direct evidence for the repair of DNA lesions, extending the range of complex biochemical reactions known to occur in bacteria at frozen temperatures. Provided that sufficient energy and nutrient sources are available, a functional DNA repair mechanism would allow cells to maintain genome integrity and augment microbial survival in icy terrestrial or extraterrestrial environments.  相似文献   

8.
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.  相似文献   

9.
The cytotoxic and mutagenic effects of topoisomerase II inhibitors were measured in closely related strains of mouse lymphoma L5178Y cells differing in their sensitivity to ionizing radiation. Strain LY-S is sensitive to ionizing radiation relative to strain LY-R and is deficient in the rejoining of DNA double-strand breaks induced by this agent, whereas 2 radiation-resistant variants of strain LY-S have regained the ability to rejoin these double-strand breaks. We have found that the sensitivity of these cells to m-AMSA, VP-16, and ellipticine is correlated to their sensitivity to ionizing radiation. However, this correlation did not extend to their sensitivities to novobiocin, camptothecin, hydrogen peroxide, methyl nitrosourea and UV radiation. Thus, there appears to be a unique correlation between sensitivity to ionizing radiation and to topoisomerase II inhibitors which stabilize the cleavable complex between the enzyme and DNA. It is possible either that (1) topoisomerase II is altered in strain LY-S and that this enzyme is involved in the repair of DNA double-strand breaks or (2) strain LY-S is deficient in a reaction which is necessary for the repair of DNA double-strand breaks induced by ionizing radiation as well as the repair of DNA damage induced by these topoisomerase II inhibitors. m-AMSA, VP-16, and ellipticine were found to be highly mutagenic at the tk locus in L5178Y strains which are heterozygous for the tk gene but not in a tk hemizygous strain, indicating that these inhibitors induce multilocus lesions in DNA, as does ionizing radiation. The differences in the sensitivity of strains LY-R and LY-S to the topoisomerase II inhibitors were paralleled by differences in the induction of protein-associated DNA double-strand breaks in the 2 strains. This correlation did not extend to the radiation-resistant variants of strain LY-S, however. The variants showed resistance to the cytotoxic effects of the inhibitors relative to strain LY-S, but exhibited DNA double-strand break induction similar to that observed in strain LY-S.  相似文献   

10.
Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay that we developed, these two DNA damages are converted into single-strand interruptions by enzymes involved in base excision repair. We showed that these single-strand interruptions are converted into double-strand DNA breaks; however, it was not due to spontaneous denaturation of DNA. Thus, we proposed a model in which DNA polymerase delta/epsilon, by producing repair patches at single-strand interruptions, collide, resulting in double-strand DNA break formation. We tested the model and investigated whether other enzymes/factors are involved in double-strand DNA break formation. Here we report that, instead of DNA polymerase delta/epsilon, flap endonuclease-1 (FEN-1), an enzyme involved in base excision repair, is responsible for the formation of double-strand DNA break in the assay. Furthermore, by transfecting a flap endonuclease-1 expression construct into cells, thus altering their flap endonuclease-1 content, we found an increased number of double-strand DNA breaks after gamma-ray irradiation of these cells. These results suggest that flap endonuclease-1 acts as a double-strand DNA break formation factor. Because FEN-1 is an essential enzyme that plays its roles in DNA repair and DNA replication, DSBs may be produced in cells as by-products of the activity of FEN-1.  相似文献   

11.
Lieber MR  Ma Y  Pannicke U  Schwarz K 《DNA Repair》2004,3(8-9):817-826
The vertebrate immune system generates double-strand DNA (dsDNA) breaks to generate the antigen receptor repertoire of lymphocytes. After those double-strand breaks have been created, the DNA joinings required to complete the process are carried out by the nonhomologous DNA end joining pathway, or NHEJ. The NHEJ pathway is present not only in lymphocytes, but in all eukaryotic cells ranging from yeast to humans. The NHEJ pathway is needed to repair these physiologic breaks, as well as challenging pathologic breaks that arise from ionizing radiation and oxidative damage to DNA.  相似文献   

12.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

13.

Background  

Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood.  相似文献   

14.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

15.
The bacterium Deinococcus (formerly Micrococcus) radiodurans and other members of the eubacterial family Deinococaceae are extremely resistant to ionizing radiation and many other agents that damage DNA. Stationary phase D. radiodurans exposed to 1.0-1.5 Mrad γ-irradiation sustains >120 DNA double-strand breaks (dsbs) per chromosome; these dsbs are mended over a period of hours with 100% survival and virtually no mutagenesis. This contrasts with nearly all other organisms in which just a few ionizing radiation induced-dsbs per chromosome are lethal. In this article we present an hypothesis that resistance of D. radiodurans to ionizing radiation and its ability to mend radiation-induced dsbs are due to a special form of redundancy wherein chromosomes exist in pairs, linked to each other by thousands of four-stranded (Holliday) junctions. Thus, a dsb is not a lethal event because the identical undamaged duplex is nearby, providing an accurate repair template. As addressed in this article, much of what is known about D. radiodurans suggests that it is particularly suited for this proposed novel form of DNA repair.  相似文献   

16.
The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid (DNA; K. M. Ulmer et al., J. Bacteriol. 138:475-485, 1979) yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stages of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497.  相似文献   

17.
Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called γ-H2AX can be used as an effective marker for DSBs repair and DNA damage response. Using Western blotting and immunohistochemistry techniques we have studied here the influence of exogenous nicotinamide adenine dinucleotide phosphate (NADP), which can potentially increase the level of intracellular NAD+, on the level of γ-H2AX formation in mouse heart cells after ionizing radiation (IR). We have found that injection of NADP in different doses immediately after IR causes an increased level of γ-H2AX in mouse heart cells 20 min after IR at the dose of 3 Gy compared to control mice after IR exposure. It indicates that there could be a relationship between intracellular NAD+ content and DNA damage response in vivo.  相似文献   

18.
Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1?/?/Aptx?/? double knockout quiescent mouse astrocytes compared with Tdp1?/? or Aptx?/? single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1?/? and Tdp1?/?/Aptx?/? double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1?/?, Aptx?/? or Tdp1?/?/Aptx?/? astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.  相似文献   

19.
Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Δ cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Δ cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Δ cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.  相似文献   

20.
Using pulsed-field gel electrophoresis, we have measured the ability of two bleomycin-sensitive mutants, XR-1 and BL-10, to repair DNA double-strands breaks (DSB). XR-1 was originally isolated by its hypersensitivity to killing with ionizing radiation, but we have also shown that it is sensitive to killing with bleomycin. In contrast, BL-10 was isolated by its extreme sensitivity to killing with bleomycin, and it is not cross-sensitive to other DNA breaking agents. A 1-h treatment of bleomycin induces a similar number of DNA double-strand breaks in XR-1, BL-10 and CHO cells. However, XR-1 is unable to repair bleomycin-induced DNA double-strand breaks, whereas BL-10 possesses the same kinetics of repair as parental CHO. These data lead us to conclude that at least two mechanisms of killing exist for bleomycin; one of them is DNA DSB-dependent, and the other seems to be DNA DSB-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号