首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

2.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

3.
Scorpions are dominant predators in some environments. Nevertheless, most studies of predatory behavior in scorpions have focused on diet composition whereas some other relevant aspects, such as predatory strategy, have been poorly explored. Herein we evaluate the prey acceptance and predatory strategy of the scorpion Bothriurus bonariensis against sympatric prey with different defenses. As prey, we selected earwigs (Forficula cf. auricularia) which use pincer-like defensive appendages, hard-bodied isopods (Armadillium vulgare) known for their conglobation defensive strategy, soft bodied isopods (Porcellio cf. scaber), which secrete noxious substances as defense mechanisms, cockroaches with limited defensive mechanisms (Blatta cf. orientalis.) and spiders (Lycosa cf. poliostoma) which possess venomous fangs. Prey were offered to 21 adults of B. bonariensis in random order until all prey had been offered to all scorpions. Prey consumption and the number of attempts needed for capture were recorded. We also evaluated the effect of sting use on immobilization time as well as the prey capture strategies on the most consumed prey. We found that despite using a similar number of attempts for capturing all prey, spiders and armadillid isopods were less consumed than other prey. Immobilization times were longer for earwigs than for armadillid isopods and cockroaches. Scorpions used alternative predatory strategies against these aforementioned prey, although the stinger was used against all of them. These results show that scorpions are able to use different predatory strategies which might allow them to include prey with diverse defensive strategies in their diet.  相似文献   

4.
Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.  相似文献   

5.
Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.  相似文献   

6.
Many organisms use chemicals to deter enemies. Some spiders can modify the composition of their silk to deter predators from climbing onto their webs. The Malaysian golden orb-weaver Nephila antipodiana (Walckenaer) produces silk containing an alkaloid (2-pyrrolidinone) that functions as a defense against ant invasion—ants avoid silk containing this chemical. In the present study, we test the generality of ants’ silk avoidance behavior in the field. We introduced three ant species to the orb webs of Nephila clavipes (Linnaeus) in the tropical rainforest of La Selva, Costa Rica. We found that predatory army ants (Eciton burchellii Westwood) as well as non-predatory leaf-cutting ants (Atta cephalotes Linnaeus and Acromyrmex volcanus Wheeler) avoided adult N. clavipes silk, suggesting that an additional species within genus Nephila may possess ant-deterring silk. Our field assay also suggests that silk avoidance behavior is found in multiple ant species.  相似文献   

7.
Invasion success can be enhanced by evolution and behavioral plasticity, but the importance of these processes for most invasions is not well understood. Previous research suggests there is a genetic basis for differences in growth rate between native and invaded range rusty crayfish (Orconectes rusticus). We hypothesized that invaded range O. rusticus achieve faster growth by allocating more time to foraging and less to defense. We conducted a laboratory experiment to test the effects of range (native or invaded) and plasticity (as induced by exposure to predators) on crayfish behavior. We collected O. rusticus adults and eggs from both ranges, hatched eggs in the lab, and reared juveniles in common conditions either with or without predatory fish. We then quantified adult and juvenile crayfish activity in an experiment with and without predatory fish. In support of our hypothesis, invaded range adults displayed reduced antipredator behavior compared to native range adults. Further, invaded range juveniles were more active than native range juveniles without predators, but all juveniles were inactive with predators. In addition, invaded range juveniles had greater plasticity in behavior than native range juveniles. These results suggest that activity level in the absence of predators has diverged in the invaded range. Because active crayfish consume more prey, this change in behavior may be responsible for rapid growth in the invaded range of O. rusticus, a trait that contributes to the strong ecological impacts of this invasive crayfish.  相似文献   

8.
Examining the functional response of predators can provide insight into the role of predation in structuring prey populations and ecological communities. This study explored feeding behaviour and functional responses of planktivorous damselfishes when offered captive reared larvae of crown-of-thorns starfish, Acanthaster sp., with the aim of determining whether these predators could ever play a role in moderating outbreaks of Acanthaster sp. We examined predatory behaviour of 11 species of planktivorous damselfish, testing: (1) the relationship between predator size and predation rate, both within and among fish species; (2) consumption rates on larvae of Acanthaster sp. versus larvae of a common, co-occurring coral reef asteroid Linckia laevigata; (3) maximal feeding rates upon both Acanthaster sp. and L. laevigata; and (4) functional responses of planktivorous fishes to increasing densities of Acanthaster sp. Consumption rates of crown-of-thorns larvae by damselfishes were independent of predator size; however, there was a significant negative relationship between predator size and consumption rate of L. laevigata, when pooling across all predatory species. Some damselfishes, including Acanthochromis polyacanthus and Amblyglyphidodon curacao, consumed larval Acanthaster sp. at a greater rate than for L. laevigata. Most predatory species (all except A. curacao and Pomacentrus amboinensis) exhibited a Type II functional response whereby the increasing feeding rate decelerated with increasing prey density. In addition to revealing that a wide range of planktivorous fishes can prey upon larvae of Acanthaster sp., these data suggest that planktivorous damselfishes may have the capacity to buffer against population fluctuations of Acanthaster sp. Importantly, predators with Type II functional responses often contribute to stability of prey populations, though planktivorous fishes may be swamped by an abnormally high influx of larvae, potentially contributing to the characteristic population fluctuations of Acanthaster sp.  相似文献   

9.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

10.
Habitat dispersion, diet and density can influence the per capita population growth of predators, and dispersed habitat can provide a spatial refuge that reduces the possibility of cannibalism among predators, thereby increasing their realized population growth rate. We tested the influence of variable habitat dispersion (dispersed patches, general patches and aggregated patches), two diets (Typha orientalis pollen and Ephestia kuehniella eggs) and initial predator density—one or two Amblydromalus limonicus (Garman and McGregor) (Acari: Phytoseiidae) founder females—on the population growth of A. limonicus in 7 days. Dispersed patches resulted in a higher total number of A. limonicus than the other two types of habitat dispersion from days 3–7 when fed on either of the diets, and started with either one or two A. limonicus females. Compared with E. kuehniella eggs, T. orientalis pollen resulted in more A. limonicus regardless of one or two founder females. Compared with two founder females, beginning with one founder female on pollen produced significantly more predatory mite females in dispersed and aggregated patches. A four-way ANOVA showed that the main effects indicated that habitat, diet, density, and time significantly influenced the number of immature and female A. limonicus. Significant interactions between habitat dispersion and diet were detected on immature and female A. limonicus. Our findings suggest that increasing the dispersion of artificial shelters on crop leaves may stimulate the control efficiency of predators in greenhouses. Furthermore, T. orientalis pollen provides a high nutritional quality supplemental diet that could enhance the ability of A. limonicus to control pests.  相似文献   

11.
Predators may have consumptive (lethal) and non-consumptive (sub-lethal) effects on prey. Non-consumptive effects include altered behavior and reduced growth and fecundity. Native prey may not recognize non-native predators as a threat, and therefore may suffer pronounced effects. Additionally, non-native predators may elicit different behavioral responses from prey compared to native predators. Theory predicts that consumptive effects should be greater for non-native predators (due to prey naiveté), and non-consumptive effects should be greater for native predators (due to predator recognition). To test these hypotheses, I monitored bicolor damselfish (Stegastes partitus) in the presence of invasive predatory Pacific lionfish (Pterois spp.), a native predator (graysby, Cephalopholis cruentata), and an egg predator (bluehead wrasse, Thalassoma bifasciatum). Body size and location of lionfish and graysby were monitored on reefs in the Bahamas. Bicolor fecundity was measured as the number and size of egg-masses that individual fish laid. Bicolor fecundity was negatively correlated with lionfish density but not graysby or bluehead density. Neither predator had a detectable effect on bicolor body size, but lionfish density was negatively correlated with the size of mature adult damselfish. I observed behavioral responses of bicolors to the two piscivores, to bluehead wrasse, and to two herbivorous fishes (Acanthurus coeruleus, Scarus spp.) as non-aggressive controls. Bicolors changed behavior (feeding and aggression) in the presence of all native fishes, but not in the presence of lionfish. Thus, differential effects exist between native and non-native predators, and invasive lionfish pose a non-consumptive threat to bicolor damselfish via reduced growth and fecundity.  相似文献   

12.
Alien predators can have large impacts on prey. It is important that we understand, and ideally predict, these impacts. Here, we compare predatory impacts of size-matched decapod crustaceans—invasive alien Eriocheir sinensis and Pacifastacus leniusculus, and native European Austropotamobius pallipes—and use this case study to inform methods for impact prediction. We quantify functional responses (FRs) on three macroinvertebrate prey species, examine switching behaviour, and measure metabolic rates as a possible mechanistic explanation for differences in predation. FRs show a consistent pattern: attack coefficients and maximum feeding rates are ordered E. sinensis?≥?P. leniusculus?≥?A. pallipes for all prey species. Attack coefficients of E. sinensis are up to 6.7 times greater than those of size-matched crayfish and maximum feeding rates up to 3.0 times greater. FR parameters also differ between the invasive and native crayfish, but only up to 2.6 times. We find no evidence of switching behaviour in crayfish but suggestions of negative switching in E. sinensis. Differences in FR parameters are mirrored by differences in routine, but not standard, metabolic rate. Overall, our data predict strong predatory impacts of E. sinensis, even relative to alien P. leniusculus. Strong impacts of P. leniusculus relative to A. pallipes may be driven more by body size or abundance than per capita effect. FRs vary between prey types in line with existing knowledge of impacts, supporting the use of FRs in quantitative, prey-specific impact predictions. MRs could offer a general mechanistic explanation for differences in predatory behaviour and impacts.  相似文献   

13.
In the present work, we provide muscular reconstruction and we infer functional properties of the forelimb of Plesiotypotherium achirense, a fossil mesotheriid notoungulate from the late Miocene of Achiri (Bolivia). This locality has yielded the widest sample ever available for the forelimb of a mesotheriid. In addition, we propose a qualitative comparison of the forelimb (osteology and myology) at the family level, including the Miocene–Pleistocene mesotheriines Mesotherium cristatum, Plesiotypotherium achirense, Caraguatypotherium munozi, Plesiotypotherium casirense, and Pseudotypotherium sp, and the late Oligocene trachytheriine Trachytherus alloxus. Functional properties are consistent with a digging ability and a “scratch-digger” lifestyle for Mesotheriidae. In general, there are only slight differences among the comparison sample, except for Mesotherium cristatum, which reflect significant osteological modifications, likely to help increasing the moment arm while scratch-digging. These features are mainly observable on scapulae (distal border caudally displaced) and humeri (deltoid crest distally oriented and crista supracondylaris lateralis laterally projected).  相似文献   

14.
In aphidophagous insect communities invaded by the harlequin ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae), intraguild predation (IGP) is widely implicated in the displacement of native predators, however, indirect trophic interactions are rarely assessed. Using molecular gut-content analysis, we investigated the relative frequencies of IGP by H. axyridis on the predatory flowerbug Anthocoris nemoralis Fabricius (Heteroptera: Anthocoridae) and prey overlap for a shared prey, the lime aphid Eucallipterus tiliae L. (Hemiptera: Aphididae), in Tilia × europaea crowns in urban parks. The frequency of IGP by H. axyridis was low: 2.7 % of larvae and 3.4 % of adults tested positive for A. nemoralis DNA. The presence of lime aphid DNA in predators was higher: 56.5 and 47.9 % of H. axyridis larvae and adults, respectively, contained E. tiliae DNA, whereas 60.8 % of adult A. nemoralis tested positive for aphid DNA. Incorporating insect densities revealed that the density of H. axyridis larvae had a strong negative effect on the likelihood of detecting aphid DNA in A. nemoralis. Prey overlap for E. tiliae was widespread in space (2–13 m height in tree crowns) and time (May–October 2011) which suggests that interspecific exploitative competition, mediated by predator life-stage, more so than IGP, is an important indirect trophic interaction between co-occurring H. axyridis and A. nemoralis. Whether exploitative competition equates to displacement of A. nemoralis populations requires further investigation. Our results emphasize the need to incorporate indirect interactions in studies of insect communities following invasion, not least because they potentially affect more species than direct interactions alone.  相似文献   

15.
The attractiveness of herbivore-induced plant volatiles (HIPVs) from a specific plant species to natural enemies has been well established. However, under natural conditions and polycultural agriculture systems, the interactions among trophic levels are thought to be more complex. For instance, complex mixtures of volatiles emitted from diverse host plant species infested by polyphagous herbivores might affect responses of natural enemies. In this study, we investigated whether a mixture of HIPVs emitted from herbivore-damaged multiple host plant species affect responses of a predatory bug. Therefore, we report (1) olfactory responses of the predatory bug (Orius strigicollis) to volatiles emitted from cotton bollworm (Helicoverpa armigera) first instar larvae-damaged multiple plant species (tomato, French bean and sweet corn), (2) chemical analyses of volatiles emitted from the three plant species exposed to different treatments and (3) olfactory responses of the predators to a reconstituted HIPV blend from multiple plant species based on chemical analyses. O. strigicollis significantly preferred volatiles emanating from H. armigera-damaged multiple plant species to volatiles emanating from a single plant species. In all the three plant species, H. armigera-damaged seedlings emitted significantly a greater amount of volatiles as well as a larger number of volatile compounds than an undamaged or a mechanically injured seedling. The predators preferred the reconstituted HIPVs from multiple plant species to the reconstituted HIPVs from a single plant species. Thus, the mixture of HIPVs from multiple plant species enhanced the attractiveness to the predators.  相似文献   

16.
Soils are often complex habitats inhabited by a wide range of organisms, some harmful to plants and others beneficial, for example by attacking harmful organisms. Beneficial organisms include predatory mites, some of which have been commercialized for biological control of pest insects and mites. The objective of this work was to evaluate under laboratory condition the suitability of representative soil insect and mite pests, especially Aceria tulipae (Keifer), as prey to the soil-inhabiting predatory mites Proctolaelaps bickleyi (Bram) and Cosmolaelaps brevistilis (Karg). Predation, oviposition and survivorship of recently molted adult females of the predators were assessed in the dark in rearing chambers at 25 ± 1 °C and 75 ± 3% RH. Predation rate by P. bickleyi on A. tulipae was significantly higher than that by C. brevistilis (196.3 vs. 71.0 specimens/day). About 482 A. tulipae were preyed by each P. bickleyi at each day, when 500 A. tulipae were made available daily to the predator. Oviposition rate on that prey was also higher for P. bickleyi (4.2 eggs/day). For C. brevistilis, the highest level of oviposition was on Caliothrips phaseoli (Hood) (1.2 eggs/day). Survivorship was always higher for C. brevistilis (≥ 70%), given its ability to remain alive relatively long even in the absence of prey. High rates of survivorship of P. bickleyi were observed on A. tulipae, Bradysia matogrossensis (Lane) and Protorhabditis sp. Promising results were obtained for P. bickleyi on A. tulipae and even on other prey, justifying the conduction of complementary studies under field condition.  相似文献   

17.
Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark (Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.  相似文献   

18.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

19.
Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes (Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis, Cerdocyon thous, Ch. brachyurus, Lycalopex culpaeus, L. griseus, L. gymnocercus, L. vetulus and Speothos venaticus. South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape—but not size—occurs between species of the genus Lycalopex. Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.  相似文献   

20.
Tail flicking is a common behavior in many bird species, but its function is often unknown. Apart from intraspecific communication, tail flicking could be used during predator–prey communication, e.g., as a signal of prey vigilance or quality. We studied this behavior in the black redstart (Phoenicurus ochruros), a species that frequently shows tail flicking and is prone to attacks by ambushing predators that hide in cover. Hence, cover might be perceived as dangerous by this species. We hypothesized that flicking should increase with decreasing distance to cover. We counted the number of tail flicks of individuals and measured their distance to the nearest cover for an ambushing predator. We found that distance to cover had a significant effect on tail flicking behavior, as flicking increased with decreasing distance, but found no difference in flicking frequency between adults and juveniles or between sexes. Consequently, tail flicking is unlikely to signal submission or to be sexually selected in the black redstart. Since tail flicking also occurred in the absence of predators, we consider tail flicking in black redstarts to display vigilance and to be directed towards ambushing predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号