首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renaturation of denatured, covalently closed circular DNA   总被引:2,自引:0,他引:2  
The rate of renaturation of denatured, covalently closed, circular DNA (form Id DNA) of the phi X174 replicative form has been investigated as a function of pH, temperature, and ionic strength. The rate at a constant temperature is a sharply peaked function of pH in the range of pH 9 to 12. The position on the pH scale of the maximum rate decreases as the temperature is increased and as the ionic strength is increased. The kinetic course of renaturation is pseudo-first order: it is independent of DNA concentration, but falls off in rate from a first order relationship as the reaction proceeds. The rate of renaturation depends critically on the temperature at which the denaturation is carried out. Form Id, prepared at an alkaline pH at 0 degrees C, renatures from 5 to more than 100 times more rapidly than that similarly prepared at 50 degrees C. Both the heterogeneity in rate and the effect of the temperature of denaturation depend, in part, on the degree of supercoiling of the form I DNA from which the form Id is prepared. However, it is concluded that a much larger contribution to both arises from a configurational heterogeneity introduced in the denaturation reaction. The renaturation rate was determined by neutralization of the alkaline reaction and analytical ultracentrifugal analysis of the amounts of forms I and Id. The nature of the proximate renatured species at the temperature and alkaline pH of renaturation was investigated by spectrophotometric titration and analytical ultracentrifugation. It is concluded that the proximate species are the same as the intermediate species defined by an alkaline sedimentation titration of the kind first done by Vinograd et al. ((1965) Proc. Natl. Acad. Sci. U. S. A. 53, 1104-1111). Observations are included on the buoyant density of form Id and on depurination of DNA at alkaline pH values and high temperatures.  相似文献   

2.
Renaturation of denatured lambda repressor requires heat shock proteins   总被引:28,自引:0,他引:28  
The temperature-sensitive bacteriophage lambda cI857 repressor protein rapidly renatures after thermal inactivation. E. coli mutants in the heat shock protein genes dnaK, dnaJ, and grpE do not efficiently reactivate heat-denatured repressor. Our results suggest that protein refolding is promoted by heat shock proteins and that such a process is the basis of the homeostatic role played by these proteins in the heat shock response.  相似文献   

3.
4.
5.
6.
The Renaturation of Denatured DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetics of renaturation of heat-denatured DNA from E. coli and pneumococcus have been examined by ultraviolet absorption measurements. The molecularity of the reaction was assessed by three independent treatments of the data, and all lead to the conclusion that renaturation is essentially first order at 60°; at 70° and 80° there is an increasing second order component, resulting in simultaneous unimolecular and bimolecular kinetics. The unimolecular kinetics rule out reaction between two, kinetically separate strands, indicating rather the zippering-up of a single, denatured entity. The bimolecular kinetics can be attributed to the complexing of two such entities; thus, the genetic or density-labeled complexes that have been observed by other investigators can be accounted for without invoking strand separation. Since renaturation at best is never complete, the free ends of two renatured molecules permit sufficient bimolecular reaction to produce density hybrids. The observed kinetics can be accounted for if the hydrogen bonds of DNA are broken during heat denaturation but the strands do not separate. Light scattering supports this by showing that the molecular weight is unchanged by denaturation. Since there is no existing evidence that is inconsistent with this hypothesis, it is reasonable to conclude that heat denaturation does not completely separate the entangled strands of the DNA molecule.  相似文献   

7.
Renaturation of calf thymus satellite DNA   总被引:6,自引:0,他引:6  
  相似文献   

8.
Polarographic reducibility of denatured DNA   总被引:1,自引:0,他引:1  
E Palecek  V Vetterl 《Biopolymers》1968,6(7):917-928
The de polarographic behavior of native and denatured DNA at pH 7.0 was studied. Whereas native DNA was polarographically inactive under the given conditions, denatured DNA yielded a reduction polarographic step at the potential of about ?1.4 V. Native DNA produced a single desorption wave on ac polarograms, while denatured DNA yielded, in addition to this wave, another more negative wave approximately corresponding, as to its potential, to the dc polarographic step of denatured DNA. The behavior of apurinic acid was similar to that of denatured DNA. The course of DNA denaturation at elevated temperature was studied by means of the two above techniques and changes at temperatures below the melting temperature observed. This finding is in agreement with earlier results obtained by oscillopolarographic and the pulse-polarographic method.  相似文献   

9.
Renaturation of DNA in the presence of ethidium bromide   总被引:1,自引:0,他引:1  
J R Hutton  J G Wetmur 《Biopolymers》1972,11(11):2337-2348
The rate of renaturation of T2 DNA has been studied as a fuction of ethidium bound per nucleotide of denatured DNA. The Binding constants and number of binding sites for ethidium have been determined by spectral titration for denatured DNA at 55, 65, and 75°C and for native DNA at 65°C in 0.4M Na+. The rate of renaturation of T2 DNA was found to be independentof ethidium binding up to 0.03 moles per mole of nucleotide. Above 0.03 moles, the rate drops off precipitously approaching zero at 0.08 and 0.06 moles bound ethidium per nucleotide at 65°C respectively. A study was also made of the use of bound ethidium fluorescence as a probe for monitoring DNA renaturation reactions.  相似文献   

10.
Renaturation and Hybridization Studies of Mitochondrial DNA   总被引:11,自引:1,他引:10       下载免费PDF全文
The products of the renaturation reaction of mitochondrial DNA from oocytes of Xenopus laevis have been studied by electron microscopy and CsCl equilibrium density gradient centrifugation. The reaction leads to the formation of intermediates containing single-stranded and double-stranded regions. Further reactions of these intermediates result in large complexes of interlinking double-stranded filaments. The formation of circular molecules of the same length as native circles of mitochondrial DNA was also observed. The formation of common high molecular weight complexes during joint reannealing of two DNA's with complementary sequences was used as a method to detect sequence homology in different DNA samples. Although this method does not produce quantitative data it offers several advantages in the present study. No homologies could be detected between the nuclear DNA and the mitochondrial DNA of X. laevis or of Rana pipiens. In interspecies comparisons homologies were found between the nuclear DNA's of X. laevis and the mouse and between the mitochondrial DNA's of X. laevis and the chick, but none between the mitochondrial DNA's of X. laevis and yeast. These results are interpreted as indicating the continuity of mitochondrial DNA during evolution.  相似文献   

11.
12.
Transcription of denatured T4 DNA   总被引:1,自引:0,他引:1  
  相似文献   

13.
A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs.  相似文献   

14.
Conformation of denatured and renatured DNA   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
19.
20.
Approximately 2% of the DNA of the mouse genome reassociates at infinitely low C 0 t values, 10-7 to 10-6 moles 1-1 s. The melting profile of the reassociation product, which is resistant to nuclease S1 digestion, has been characterized by hydroxyapatite column chromatography. The properties of these nuclease resistant sequences suggest that they exist as DNA-hairpins and that they originate from reverted base sequences within the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号