首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Liu J  Tang X  Wang H  Balasubramanian M 《FEBS letters》2000,478(1-2):105-108
Previously we have reported that Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. In this report, we present evidence that S. pombe Bgs2p, a 1,3-beta-glucan synthase that shows 56% identity to Drc1p/Cps1p, is essential for maturation of ascospore wall in S. pombe, but is not required for vegetative growth. Diploid cells homozygous for the bgs2-null mutation, as well as homothallic bgs2-null mutant haploids undergo meiosis normally. However, a 1, 3-beta-glucan containing spore wall is not assembled in these cells. The spores resulting from meiosis of a bgs2-null mutant lyse upon release from the ascus and are therefore inviable. Using a green fluorescent protein-tagged Bgs2p, we demonstrate that Bgs2p is localized at the periphery of the ascospores during meiosis and sporulation. However, Bgs2p is not detected in vegetative cells. We conclude that Bgs2p is required for 1,3-beta-glucan synthesis during ascospore wall maturation.  相似文献   

2.
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.  相似文献   

3.
Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells.  相似文献   

4.
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.  相似文献   

5.
In Schizosaccharomyces pombe, Bgs1/Cps1p is a β(1,3)-glucan synthase required for linear β(1,3)-glucan synthesis and primary septum formation. Here, we have studied the regulation of Bgs1p by Cfh3/Chr4p, a member of a family of conserved adaptor proteins, which resembles the chitin synthase regulator Chs4p from Saccharomyces cerevisiae and Candida albicans. cfh3Δ cells showed a genetic interaction with cps1-191, and Cfh3p co-immunoprecipitated with Bgs1/Cps1p. In the absence of cfh3+, cells were more sensitive to digestion by glucanases, and both Calcofluor staining and glucan synthesis were reduced. We found that in a wild-type strain, β(1,3)-glucan synthesis was reduced under stress conditions. In the cfh3Δ, cps1-191, and cfh3Δ cps1-191 strains, β(1,3)-glucan synthesis was further reduced, and growth was impaired under stress conditions, suggesting that Cfh3p and Bgs1p might play a role in ensuring growth in unfavorable environments. In a cfh3Δ mutant, Bgs1p was delocalized when the cells were distressed, but a blockade in endocytosis prevented this delocalization. Finally, we found that the SEL1 repeats are required for Cfh3p function. These results show that Cfh3p is a regulatory protein for Bgs1p and that its function is particularly necessary when the cells are undergoing stress.In Schizosaccharomyces pombe, the primary septum, composed of linear and branchedβ(1,3)-glucan, is surrounded by a secondary septum with a composition similar to that of the lateral cell wall (branched β(1,3)-glucan, β(1,6)-glucan, α(1,3)-glucan, and mannoproteins (1, 2)). Bgs1/Cps1p is the β(1,3)-glucan synthase responsible for the synthesis of linear β(1,3)-glucan and the primary septum structure (3). In the absence of this activity, the cells are able to form remedial septa that do not contain linear β(1,3)-glucan. These septa do not stain with low concentrations of Calcofluor and cannot be degraded by glucanases, so the cells remain chained, forming hyphal structures (3). In S. pombe there are four glucan synthase homologues, bgs1+/cps1+, bgs2+, bgs3+, and bgs4+ (49). In the case of the bgs1Δ cells, apical growth takes place in two opposite directions, producing branched cells with a dichotomic growth. This phenotype is not observed in bgs2Δ, bgs3Δ,or bgs4Δ mutants, thus suggesting that Bgs1p might play a specific role in the control of cell growth (3). Finally, Bgs1p is a component of the cytokinesis checkpoint, which coordinates mitosis with actomyosin ring contraction and septum synthesis (10, 11).The study of Bgs1p regulation should help us to understand the control of cell wall synthesis and cytokinesis in S. pombe. Bgs1p requires an active Septation Initiation Network (SIN), an assembled contractile actomyosin ring, and the type-V myosin Myo52p to localize properly at the division site (9, 12, 13). Regarding the regulation of biochemical activity, the PKC homologues Pck1p and Pck2p activate β(1,3)-glucan synthesis in an unknown way (14) while the Rho1p GTPase is a direct activator of the β(1,3)-glucan synthase catalytic subunit (15).The cell wall is a morphogenetic determinant, but also an essential cellular structure that protects the organism against cell lysis in hypoosmotic environments. In S. pombe, the mitogen-activated protein (MAP)3 kinase Spm1/Pmk1p pathway (also known as the cell integrity pathway) regulates growth and morphogenesis in response to multiple stresses, including hyper- or hypoosmotic conditions, nutrient limitation, and cell wall-damaging compounds (16, 17). Proper growth and morphology under hyperosmotic conditions also requires Skb1p and Skb5p, which are regulators of the Shk1/Orb2/Pak1p kinase (18, 19). However, little is known about the role of the cell wall as a protective element against hyperosmotic conditions, the presence of high concentrations of chloride ions, or nutrient limitation.Here we examine the role of the Cfh3/Chr4 protein in cell wall synthesis and response to stress. Cfh3p shares significant similarity with the Chs4 proteins from Saccharomyces cerevisiae and from Candida albicans, which are chitin synthase regulators (20, 21). In S. cerevisiae, regulation of the chitin synthase Chs3p by Chs4p is complex and still not well understood. Chs4p is required for the correct localization of Cfh3p at the bud neck by mediating its anchorage to septins through the adaptor protein Bni4p, but it also acts as a biochemical activator and is required for the stability of Chs3p at the plasma membrane (20, 2225). In S. pombe, no chitin synthesis occurs during vegetative growth (2629), glucan being the main cell wall component, there is no Bni4p homologue, and septins are involved in cell separation but not in septum synthesis (30, 31). We wanted to investigate whether Cfh3p played any role in cell wall synthesis and/or morphogenesis in the fission yeast. We found that in the absence of cfh3+, the cells showed reduced β-glucan synthesis and impaired growth under stress conditions. These phenotypes were aggravated in a double cfh3Δ cps1-191 mutant. Our results suggest that Cfh3p is a regulator of the β-glucan synthase Bgs1p whose presence is more critical when the cells are undergoing environmental stress. Cfh3p belongs to a conserved family of scaffold proteins characterized by the presence of tandem repeats of SEL1 domains, which are involved in signal transduction during different cellular processes (32). Here we found that the SEL1 domains in Cfh3p were required for its function.  相似文献   

6.
Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells. Each truncation was assayed for the ability to localize to the cell poles and septum (the normal cellular locations of Myo52) and to rescue the morphology defects and temperature sensitivity of a myo52Delta strain. A region within the Myo52 tail (amino acids 1320-1503), with a high degree of similarity to the vesicle-binding domain of the budding yeast type V myosin Myo2p, was essential for Myo52's role in the maintenance of growth polarity and cell division. A separate region (amino acids 1180-1320) was required for Myo52 foci to move throughout the cytoplasm; however, constructs lacking this region, but which retained the ability to dimerize still associated with actin at sites of cell growth. Not all of the Myo52 truncations which localized rescued the morphological defects of myo52Delta, demonstrating that loss of function was not simply brought about by an inability of mutant proteins to target the correct cellular location. By contrast, Myo52 motor activity was required for both localization and cellular function. myo52Delta cells were unable to efficiently localize the beta-1,3-glucan synthase, Bgs1, either at the cell poles or at the division septum, regions of cell wall deposition. Bgs1 and Myo52 localized to vesicle-like dots at the poles in interphase and these moved together to the septum at division. These data have led to the formulation of a model in which Myo52 is responsible for the delivery of Bgs1 and associated molecules to polar cell growth regions during interphase. On the commencement of septum formation, Myo52 transports Bgs1 to the cell equator, thus ensuring the accurate deposition of beta-1,3-glucan at the leading edge of the primary septum.  相似文献   

7.
β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3+, a new member of this family. bgs3+ was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3+ is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.  相似文献   

8.
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.  相似文献   

9.
In fungal cells cytokinesis requires coordinated closure of a contractile actomyosin ring (CAR) and synthesis of a special cell wall structure known as the division septum. Many CAR proteins have been identified and characterized, but how these molecules interact with the septum synthesis enzymes to form the septum remains unclear. Our genetic study using fission yeast shows that cooperation between the paxillin homolog Pxl1, required for ring integrity, and Bgs1, the enzyme responsible for linear β(1,3)glucan synthesis and primary septum formation, is required for stable anchorage of the CAR to the plasma membrane before septation onset, and for cleavage furrow formation. Thus, lack of Pxl1 in combination with Bgs1 depletion, causes failure of ring contraction and lateral cell wall overgrowth towards the cell lumen without septum formation. We also describe here that Pxl1 concentration at the CAR increases during cytokinesis and that this increase depends on the SH3 domain of the F-BAR protein Cdc15. In consequence, Bgs1 depletion in cells carrying a cdc15ΔSH3 allele causes ring disassembly and septation blockage, as it does in cells lacking Pxl1. On the other hand, the absence of Pxl1 is lethal when Cdc15 function is affected, generating a large sliding of the CAR with deposition of septum wall material along the cell cortex, and suggesting additional functions for both Pxl1 and Cdc15 proteins. In conclusion, our findings indicate that CAR anchorage to the plasma membrane through Cdc15 and Pxl1, and concomitant Bgs1 activity, are necessary for CAR maintenance and septum formation in fission yeast.  相似文献   

10.
11.
Cytokinesis is the final step of the cell-division cycle. In fungi, it relies on the coordination of constriction of an actomyosin contractile ring and construction of the septum at the division site. Glucan synthases synthesize glucans, which are the major components in fungal cell walls and division septa. It is known that Rho1 and Rho2 GTPases regulate glucan synthases Bgs1, Bgs4, and Ags1, and that Sbg1 and the F-BAR protein Cdc15 play roles in Bgs1 stability and delivery to the plasma membrane. Here we characterize Smi1, an intrinsically disordered protein that interacts with Bgs4 and regulates its trafficking and localization in fission yeast. Smi1 is important for septum integrity, and its absence causes severe lysis during cytokinesis. Smi1 localizes to secretory vesicles and moves together with Bgs4 toward the division site. The concentrations of the glucan synthases Bgs1 and Bgs4 and the glucanases Agn1 and Bgl2 decrease at the division site in the smi1 mutant, but Smi1 seems to be more specific to Bgs4. Mistargeting of Smi1 to mitochondria mislocalizes Bgs4 but not Bgs1. Together, our data reveal a novel regulator of glucan synthases and glucanases, Smi1, which is more important for Bgs4 trafficking, stability, and localization during cytokinesis.  相似文献   

12.
Fungal cytokinesis requires the assembly of a dividing septum wall. In yeast, the septum has to be selectively digested during the critical cell separation process. Fission yeast cell wall α(1-3)glucan is essential, but nothing is known about its localization and function in the cell wall or about cooperation between the α- and β(1-3)glucan synthases Ags1 and Bgs for cell wall and septum assembly. Here, we generate a physiological Ags1-GFP variant and demonstrate a tight colocalization with Bgs1, suggesting a cooperation in the important early steps of septum construction. Moreover, we define the essential functions of α(1-3)glucan in septation and cell separation. We show that α(1-3)glucan is essential for both secondary septum formation and the primary septum structural strength needed to support the physical forces of the cell turgor pressure during cell separation. Consequently, the absence of Ags1 and therefore α(1-3)glucan generates a special and unique side-explosive cell separation due to an instantaneous primary septum tearing caused by the turgor pressure.  相似文献   

13.
Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the beta-1,3-glucan synthase bgs2p synthesizes linear beta-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between beta-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with beta-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4(+), a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4Delta diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4(+) is strongly induced during sporulation and a yellow fluorescent protein (YFP)-gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe.  相似文献   

14.
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.  相似文献   

15.
BACKGROUND INFORMATION: In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast, ring constriction is followed by deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomyosin ring and septum assembly, little is known about the later steps involving the cleavage of the cell wall. RESULTS: We identified a novel gene in Schizosaccharomyces pombe, namely the agn1(+) gene that has homology to fungal 1,3-alpha-glucanases (mutanases). Disruption of the agn1(+) gene is not lethal to the cells, but does interfere with their separation, whereas overexpression of Agn1p is toxic and causes cell lysis. Agn1p levels reach a peak during septation and the protein localizes to the septum region before cell separation. Moreover, agn1(+) is responsible for the 1,3-alpha-glucanase activity, which shows a maximum at the end of septation. CONCLUSIONS: Our results clearly suggest the existence of a relationship between agn1(+), 1,3-alpha-glucanase activity and the completion of septation in S. pombe. Agn1p could be involved in the cleavage of the cylinder of the old wall that surrounds the primary septum, a region rich in alpha-glucans.  相似文献   

16.
The Rho GTPase family and their effectors are key regulators involved in many eukaryotic cell functions related to actin organization and polarity establishment. Schizosaccharomyces pombe Rho1p is essential, directly activates the (1,3)-beta-d-glucan synthase, and participates in regulation of cell wall growth and morphogenesis. Here we describe the characterization of the fission yeast Rho5p GTPase, highly homologous to Rho1p, sharing 86% identity and 95% similarity. Overexpression of the hyperactive allele rho5-G15V causes a morphological effect similar to that of rho1-G15V, but the penetrance is significantly lower, and overexpression of the dominant-negative allele rho5-T20N causes lysis like that of rho1-T20N. Importantly, overexpression of rho5(+) but no other rho genes is able to rescue the lethality of rho1Delta cells. Shutoff experiments indicated that Rho5p can replace Rho1p, but it is not as effective in maintaining cell wall integrity or actin organization. rho5(+) expression is hardly detected during log-phase growth but is induced under nutritional starvation conditions. rho5Delta cells are viable and do not display any defects during logarithmic growth. However, when rho1(+) expression is repressed during stationary phase, rho5Delta cells display reduced viability. Ascospores lacking Rho5p are less resistant to heat or lytic enzymes than wild-type spores. Moreover, h(90) mutant strains carrying the hyperactive rho5-G15V or the dominant-negative rho5-T20N alleles display severe ascospore formation defects. These results suggest that Rho5p functions in a way similar to, but less efficient than, Rho1p, plays a nonessential role during stationary phase, and participates in the spore wall formation.  相似文献   

17.
18.
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the formation of a daughter-side ring. Around telophase, Hof1p is phosphorylated and the double rings merge into a single ring that contracts slightly and may colocalize with the actomyosin structure. Upon septum formation, Hof1p splits into two rings, disappearing upon cell separation. Hof1p localization is dependent on septins but not Myo1p. Synthetic lethality suggests that Bni1p and Myo1p belong to one functional pathway, whereas Hof1p and Bnr1p belong to another. These results suggest that Hof1p may function as an adapter linking the primary septum synthesis machinery to the actomyosin system. The formation of the actomyosin ring is not affected by bni1Delta, hof1Delta, or bnr1Delta. However, Myo1p contraction is affected by bni1Delta but not by hof1Delta or bnr1Delta. In bni1Delta cells that lack the actomyosin contraction, septum formation is often slow and asymmetric, suggesting that actomyosin contraction may provide directionality for efficient septum formation.  相似文献   

19.
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.  相似文献   

20.
Jiang W  Hallberg RL 《Genetics》2000,154(3):1025-1038
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases found in eukaryotic cells. We cloned two genes, par1(+) and par2(+), encoding distinct B' subunits of PP2A in fission yeast. They share 52% identity at the amino acid sequence level. Neither gene is essential but together they are required for normal septum positioning and cytokinesis, for growth at both high and low temperature, and for growth under a number of stressful conditions. Immunofluorescence microscopy revealed that Par2p has a cell-cycle-related localization pattern, being localized at cell ends during interphase and forming a medial ring in cells that are undergoing septation and cytokinesis. Our analyses also indicate that Par1p is more abundant than Par2p in the cell. Cross-organism studies showed that both par1(+) and par2(+) could complement the rts1Delta allele in Saccharomyces cerevisiae, albeit to different extents, in spite of the fact that neither contains a serine/threonine-rich N-terminal domain like that found in the S. cerevisiae homolog Rts1p. Thus, while Schizosaccharomyces pombe is more similar to higher eukaryotes with respect to its complement of B'-encoding genes, the function of those proteins is conserved relative to that of Rts1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号