首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the molecular defect is unknown. In 15 families with WAS, seven restriction fragment length polymorphic loci from the X chromosome were used to map the disease locus. Of the eight intervals studied, the likelihood of the WAS gene lying between DXS7 (Xp11.3) and DXS14 (Xp11) was at least 128 times higher than that for any other interval. The most likely gene order is DXS84-OTC-DXS7-WAS-DXS14-DXS1-PGK-DXYS1. Close genetic linkage to DXS7 and DXS14 permits accurate prenatal diagnosis and carrier detection with greater than 98% confidence in fully informative WAS families.  相似文献   

2.
Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by night blindness, nystagmus, myopia, a variable decrease in visual acuity, an abnormal electroretinographic response, and a disturbance in dark adaptation. Two forms of X-linked CSNB have been defined, complete CSNB in which rod function is extinguished, and incomplete CSNB in which rod function is reduced but not extinguished, as seen by electroretinography and dark adaptometry. In studying a large family of Mennonite ancestry, we have confirmed linkage between the locus (CSNB2) for incomplete CSNB and genetic markers in the Xp11 region. In particular, lod scores of 12.25 and 15.26 at zero recombination were observed between CSNB2 and the markers DXS573 and DXS255. Detailed analysis of critical recombinant chromosomes in this extended family have refined the minimal region for the CSNB2 locus to the interval between DXS6849 and DXS8023 in Xp11.23. Received: 5 November 1997 / Accepted: 23 February 1998  相似文献   

3.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by disturbed or absent night vision; its clinical features may also include myopia, nystagmus, and impaired visual acuity. X-linked CSNB is clinically heterogeneous, and it may also be genetically heterogeneous. We have studied 32 families with X-linked CSNB, including 11 families with the complete form of CSNB and 21 families with the incomplete form of CSNB, to identify genetic-recombination events that would refine the location of the disease genes. Critical recombination events in the set of families with complete CSNB have localized a disease gene to the region between DXS556 and DXS8083, in Xp11.4-p11.3. Critical recombination events in the set of families with incomplete CSNB have localized a disease gene to the region between DXS722 and DXS8023, in Xp11.23. Further analysis of the incomplete-CSNB families, by means of disease-associated-haplotype construction, identified 17 families, of apparent Mennonite ancestry, that share portions of an ancestral chromosome. Results of this analysis refined the location of the gene for incomplete CSNB to the region between DXS722 and DXS255, a distance of 1.2 Mb. Genetic and clinical analyses of this set of 32 families with X-linked CSNB, together with the family studies reported in the literature, strongly suggest that two loci, one for complete (CSNB1) and one for incomplete (CSNB2) X-linked CSNB, can account for all reported mapping information.  相似文献   

4.
Linkage analysis was performed in 19 families segregating for the Wiskott-Aldrich syndrome (WAS) and in 1 family with X-linked thrombocytopenia using nine polymorphic DNA markers spanning the interval DXS7-DXS14. The results confirm close linkage of WAS to the DXS7, TIMP, OATL1, DXS255, DXS146, and DXS14 loci and reveal three additional marker loci, DXS426, SYP, and TFE3, to be closely linked to WAS. The linkage data are also consistent with the localization of X-linked thrombocytopenia to the same chromosomal region as WAS and support localization of the WAS gene between the TIMP and DXS 146 loci. However, the data were insufficient for positioning these disease genes with respect to the four marker loci that map within this latter interval. Analysis of recombination events between the marker loci place the TFE3 gene distal to DXS255 and favor the marker loci order Xpter-DXS7-(DXS426, TIMP)-(OATL1, SYP, TFE3)-DXS255-DXS146-DXS14.  相似文献   

5.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

6.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

7.
X-linked progressive cone dystrophy (COD1) causes progressive deterioration of visual acuity, deepening of central scotomas, macular changes, and bull's-eye lesions. The cone electroretinography (ERG) is variably abnormal in affected males, and the rod ERG may also be abnormal. The clinical picture of heterozygous females ranges from asymptomatic to a widespread spectrum of cone-mediated dysfunction. A prior linkage study demonstrated linkage between the COD1 locus and the marker locus DXS84, assigned to Xp21.1, with no recombination. In the present study, we have clinically characterized a large four-generation family with COD1 and have performed a linkage analysis using seven polymorphic markers on the short arm of the X chromosome. No recombination was observed between the disease and the marker loci DXS7 and MAOA, suggesting that the location of COD1 is in the region Xp11.3, distal to DXS84 and proximal to ARAF1.  相似文献   

8.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

9.
Summary The q26–q28 region of the human X chromosome contains several important disease loci, including the locus for the fragile X mental retardation syndrome. We have characterized new polymorphic DNA markers useful for the genetic mapping of this region. They include a new BclI restriction fragment length polymorphism (RFLP) detected by the probe St14-1 (DXS52) and which may therefore be of diagnostic use in hemophilia A families. A linkage analysis was performed in fragile X families and in large normal families from the Centre d'Etude du Polymorphisme Humain (CEPH) by using seven polymorphic loci located in Xq26-q28. This multipoint linkage study allowed us to establish the order centromere-DXS100-DXS86-DXS144-DXS51-F9-FRAX-(DXS52-DXS15). Together with other studies, our results define a cluster of nine loci that are located in Xq26-q27 and map within a 10 to 15 centimorgan region. This contrasts with the paucity of markers (other than the fragile X locus) between the F9 gene in q27 and the G6PD cluster in q28, which are separated by about 30% recombination.  相似文献   

10.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

11.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by impaired night vision, variably involving high myopia, nystagmus, decreased visual acuity, and strabismus. Linkage studies have identified two distinct loci for X-linked CSNB1 and CSNB2 on the short arm of chromosome X. The gene mutated in families displaying the "incomplete phenotype" of CSNB (i.e., CSNB2) has recently been identified. To identify novel candidate genes for the "complete form" of CSNB (i.e., CSNB1) we screened the physically vast region Xp11.3-Xp11.4 for cDNA sequences. This led us to identify and map the G protein coupled receptor (GPCR) gene GPR34 to Xp11.4 within 650 kb of the marker DXS993. Deletion screening via Southern blotting and direct sequencing of GPR34 revealed no mutations in 19 unrelated men with CSNB1, excluding a causal role in the disease. However, because of its expression in retinal and neural tissue and the involvement of GPCRs in transmembrane signal transduction, GPR34 remains a putative candidate gene for a number of ocular diseases which also map to the Xp11.4 region.  相似文献   

12.
Genetic mapping of new RFLPs at Xq27-q28.   总被引:15,自引:0,他引:15  
The development of the human gene map in the region of the fragile X mutation (FRAXA) at Xq27 has been hampered by a lack of closely linked polymorphic loci. The polymorphic loci DXS369 (detected by probe RN1), DXS296 (VK21A, VK21C), and DXS304 (U6.2) have recently been mapped to within 5 cM of FRAXA. The order of loci near FRAXA has been defined on the basis of physical mapping studies as cen-F9-DXS105-DXS98-DXS369-DXS297-FRAXA-++ +DXS296-IDS-DXS304-DXS52-qter. The probe VK23B detected HindIII and XmnI restriction fragment length polymorphisms (RFLPs) at DXS297 with heterozygote frequencies of 0.34 and 0.49, respectively. An IDS cDNA probe, pc2S15, detected StuI and TaqI RFLPs at IDS with heterozygote frequencies of 0.50 and 0.08, respectively. Multipoint linkage analysis of these polymorphic loci in normal pedigrees indicated that the locus order was F9-(DXS105, DXS98)-(DXS369, DXS297)-(DXS293,IDS)-DXS304-DXS52. The recombination fractions between adjacent loci were F9-(0.058)-DXS105-(0.039)-DXS98-(0.123)-DXS369-(0.00)- DXS297-(0.057)-DXS296- (0.00)-IDS-(0.012)-DXS304-(0.120)-DXS52. This genetic map will provide the basis for further linkage studies of both the fragile X syndrome and other disorders mapped to Xq27-q28.  相似文献   

13.
Genetic and physical mapping around the properdin P gene.   总被引:6,自引:0,他引:6  
A CA repeat has been found on the human X chromosome within 16 kb of the gene encoding properdin P factor (PFC) and has been shown to be a highly informative marker. Two more polymorphic CA repeats were found in a cosmid containing DXS228. The CA repeats, and other markers from proximal Xp, were mapped genetically in CEPH families and the likely order of markers was established as Xpter-(DXS7, MAO-A, DXS228)-(PFC, DXS426)-(TIMP, OATL1)-DXS255-Xcen. This places PFC in the region Xp11.3-Xp11.23, thus refining previous in situ hybridization data. Two yeast artificial chromosomes (YACs) (440 and 390 kb) contain both PFC and DXS426, and one of them (440 kb) also contains TIMP. This confirms the genetic order TIMP-(PFC, DXS426). PFC and TIMP are located on the same 100-kb SalI/PvuI fragment of the 440-kb YAC. Given the genetic orientation of TIMP and (PFC, DXS426), this YAC can now serve as a starting point for directional walking toward disease genes located in Xp11.3-Xp11.2 such as retinitis pigmentosa (RP2) and Wiskott-Aldrich syndrome.  相似文献   

14.
The Coffin-Lowry syndrome (CLS) is an X-linked inherited disease of unknown pathogenesis characterized by severe mental retardation, typical facial and digital anomalies, and progressive skeletal deformations. Our previous linkage analysis, based on four pedigrees with the disease, suggested a localization for the CLS locus in Xp22.1-p22.2, with the most likely position between the marker loci DXS41 and DXS43. We have now extended the study to 16 families by using seven RFLP marker loci spanning the Xp22.1-p22.2 region. Linkage has been established with five markers from this part of the X chromosome: DXS274 (lod score [Z] (theta) = 3.53 at theta = .08), DXS43 (Z(theta) = 3.16 at theta = .08), DXS197 (Z(theta) = 3.03 at theta = .05), DXS41 (Z(theta) = 2.89 at theta = .08), and DXS207 (Z(theta) = 2.73 at theta = .13). A multipoint linkage analysis further placed, with a maximum multipoint Z of 7.30, the mutation-causing CLS within a 7-cM interval defined by the cluster of tightly linked markers (DXS207-DXS43-DXS197) on the distal side and by DXS274 on the proximal side. Thus, these further linkage data confirm and refine the map location for the gene responsible for CLS in Xp22.1-p22.2. As no linkage heterogeneity was detected, this validates the use of the Xp22.1-p22.2 markers for carrier detection and prenatal diagnosis in CLS families.  相似文献   

15.
The most common form of human severe combined immunodeficiency (SCID) is inherited as an X-linked recessive genetic defect, MIM 300400. The disease locus, SCIDX1, has previously been placed in Xq13.1-q21.1 by demonstration of linkage to polymorphic markers between DXS159 and DXS3 and by exclusion from interstitial deletions of Xq21.1-q21.3. We report an extension of previous linkage studies, with new markers and a total of 25 SCIDX1 families including female carriers identified by nonrandom X chromosome inactivation in their T lymphocytes. SCIDX1 was nonrecombinant with DXS441, with a lod score of 17.96. Linkage relationships of new markers in the SCIDX1 families were consistent with the linkage map generated in the families of the Centre d'Etude du Polymorphisme Humain (CEPH) and with available physical map data. The most likely locus order was DXS1-(DXS159,DXS153)-DXS106-DXS132-DXS4 53-(SCIDX1,PGK1, DXS325,DXS347,DXS441)-DXS447-DXS72-DXYS 1X-DXS3. The SCIDX1 region now spans approximately 10 Mb of DNA in Xq13; this narrowed genetic localization will assist efforts to identify gene candidates and will improve genetic management for families with SCID.  相似文献   

16.
Linkage analysis in X-linked congenital stationary night blindness.   总被引:4,自引:0,他引:4  
X-linked congenital stationary night blindness (XL-CSNB) is a nonprogressive disorder of the retina, characterized by night blindness, reduced visual acuity, and myopia. Previous studies have localized the CSNB1 locus to the region between OTC and TIMP on the short arm of the X chromosome. We have carried out linkage studies in three XL-CSNB families that could not be classified as either complete or incomplete CSNB on the criteria suggested by Miyake et al. (1986. Arch. Ophthalmol. 104: 1013-1020). We used markers for the DXS538, DMD, OTC, MAOA, DXS426, and TIMP loci. Two-point analyses show that there is close linkage between CSNB and MAOA (theta max = 0.05, Zmax = 3.39), DXS426 (theta max = 0.06, Zmax = 2.42), and TIMP (theta max = 0.07, Zmax = 2.04). Two multiply informative crossovers are consistent with CSNB lying proximal to MAOA and distal to DXS426, respectively. Multipoint analysis supports this localization, giving the most likely order as DMD-17 cM-MAOA-7.5 cM-CSNB-7.5 cM-DXS426/TIMP-cen, and thus refines the localization of CSNB.  相似文献   

17.
Summary Linkage studies have been performed in 5 incontinentia pigmenti (IP) families totaling 29 potentially informative meioses. Ten probes of the Xp arm were used, six of them were precisely localized on the X chromosome, using hamster x human somatic cell hybrids containing a broken X chromosome derived from an incontinentia pigmenti patient carrying an X;9 translocation [46,XX,t(X;9)(p11.21;q34)]. The following order for probes is proposed: pter-(DXS7, DXS146, DXS255)-IP1-(DXS14, DXS90)-DXS106-qter. The negative lod scores obtained exclude the possibility that in the families studied, the gene for IP is located in Xp11 or in the major part of the Xp arm.  相似文献   

18.
Two genetic loci, RP2 and RP3, for X-linked retinitis pigmentosa (XLRP) have been localized to Xp11.3-11.23 and Xp21.1, respectively. RP3 appears to account for 70% of XLRP families; however, mutations in the RPGR gene (isolated from the RP3 region) are identified in only 20% of affected families. Close location of XLRP loci at Xp and a lack of unambiguous clinical criteria do not permit assignment of genetic subtype in a majority of XLRP families; nonetheless, in some pedigrees, both RP2 and RP3 could be excluded as the causative locus. We report the mapping of a novel locus, RP24, by haplotype and linkage analysis of a single XLRP pedigree. The RP24 locus was identified at Xq26-27 by genotyping 52 microsatellite markers spanning the entire X chromosome. A maximum LOD score of 4.21 was obtained with DXS8106. Haplotype analysis assigned RP24 within a 23-cM region between the DXS8094 (proximal) and DXS8043 (distal) markers. Other chromosomal regions and known XLRP loci were excluded by obligate recombination events between markers in those regions and the disease locus. Hemizygotes from the RP24 family have early onset of rod photoreceptor dysfunction; cone receptor function is normal at first, but there is progressive loss. Patients at advanced stages show little or no detectable rod or cone function and have clinical hallmarks of typical RP. Mapping of the RP24 locus expands our understanding of the genetic heterogeneity in XLRP and will assist in development of better tools for diagnosis.  相似文献   

19.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the basic molecular defect is unknown. We previously located the WAS gene between two DNA markers, DXS7 (Xp11.3) and DXS14 (Xp11), and mapped it to the proximal short arm of the human X chromosome (Kwan et al., 1988, Genomics 3:39-43). In this study, further mapping was performed on 17 WAS families with two additional RFLP markers, TIMP and DXS255. Our data suggest that DXS255 is closer to the WAS locus than any other markers that have been previously described, with a multipoint maximum lod score of Z = 8.59 at 1.2 cM distal to DXS255 and thus further refine the position of the WAS gene on the short arm of the X chromosome. Possible locations for the WAS gene are entirely confined between TIMP (Xp11.3) and DXS255 (Xp11.22). Use of these markers thus represents a major improvement in genetic prediction in WAS families.  相似文献   

20.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号